Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00557671" target="_blank" >RIV/61388955:_____/22:00557671 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0331580" target="_blank" >http://hdl.handle.net/11104/0331580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.2c00993" target="_blank" >10.1021/acs.jpclett.2c00993</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals
Popis výsledku v původním jazyce
Strong electron correlation can be captured with multireference wave function methods, but an accurate description of the electronic structure requires accounting for the dynamic correlation, which they miss. In this work, a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The ACn method accounts for terms up to order n in the coupling constant, and it is size-consistent and free from instabilities. It employs the multireference random phase approximation and the Cholesky decomposition technique, leading to a computational cost growing with the fifth power of the system size. Because of the dependence on only one- and two-electron reduced density matrices, ACn is more efficient than existing ab initio multireference dynamic correlation methods. ACn affords excellent results for singlet–triplet gaps of challenging organic biradicals. The development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.
Název v anglickém jazyce
Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals
Popis výsledku anglicky
Strong electron correlation can be captured with multireference wave function methods, but an accurate description of the electronic structure requires accounting for the dynamic correlation, which they miss. In this work, a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The ACn method accounts for terms up to order n in the coupling constant, and it is size-consistent and free from instabilities. It employs the multireference random phase approximation and the Cholesky decomposition technique, leading to a computational cost growing with the fifth power of the system size. Because of the dependence on only one- and two-electron reduced density matrices, ACn is more efficient than existing ab initio multireference dynamic correlation methods. ACn affords excellent results for singlet–triplet gaps of challenging organic biradicals. The development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Letters
ISSN
1948-7185
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
4570-4578
Kód UT WoS článku
000806610000024
EID výsledku v databázi Scopus
2-s2.0-85131107208