Additive transport in DNA molecular circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00560212" target="_blank" >RIV/61388955:_____/22:00560212 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388971:_____/22:00560212 RIV/61388963:_____/22:00563907 RIV/00216208:11320/22:10447002 RIV/61989592:15310/22:73617305 RIV/68407700:21230/22:00360665
Výsledek na webu
<a href="https://hdl.handle.net/11104/0333223" target="_blank" >https://hdl.handle.net/11104/0333223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d2tc01219g" target="_blank" >10.1039/d2tc01219g</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Additive transport in DNA molecular circuits
Popis výsledku v původním jazyce
This work describes additive transport in DNA molecules due to a self-assembly of complementary single-stranded deoxyribonucleic acid chains, i.e. DNA hybridization. Charge transport properties in the DNA junctions at the single molecule level were studied experimentally by the break junction technique in an aqueous environment and theoretically including a non-equilibrium Green's function approach within the density functional based tight-binding method and molecular orbital calculations using density functional method and molecular dynamics simulations. Two types of anchoring groups, namely, amino and thiolate moieties were used to connect the single-stranded DNA (anchor-linker-3 '-GGCACTCGG-5 '-linker-anchor) to gold electrodes. Double-stranded DNA junctions were prepared by hybridization of single-stranded DNA with a complementary oligonucleotide chain (5 '-CCGTGAGCC-3 ') not containing linkers and anchoring groups. Three stable junction configurations were observed for both single-stranded and double-stranded DNA irrespective of the anchoring group, whereas junction conductance almost doubled upon DNA hybridization. Thiolate anchoring led to more robust and longer junction configurations compared to NH2 groups. Reasons for the observed conductance enhancement and the anchoring group effect on the overall conductance are being discussed.
Název v anglickém jazyce
Additive transport in DNA molecular circuits
Popis výsledku anglicky
This work describes additive transport in DNA molecules due to a self-assembly of complementary single-stranded deoxyribonucleic acid chains, i.e. DNA hybridization. Charge transport properties in the DNA junctions at the single molecule level were studied experimentally by the break junction technique in an aqueous environment and theoretically including a non-equilibrium Green's function approach within the density functional based tight-binding method and molecular orbital calculations using density functional method and molecular dynamics simulations. Two types of anchoring groups, namely, amino and thiolate moieties were used to connect the single-stranded DNA (anchor-linker-3 '-GGCACTCGG-5 '-linker-anchor) to gold electrodes. Double-stranded DNA junctions were prepared by hybridization of single-stranded DNA with a complementary oligonucleotide chain (5 '-CCGTGAGCC-3 ') not containing linkers and anchoring groups. Three stable junction configurations were observed for both single-stranded and double-stranded DNA irrespective of the anchoring group, whereas junction conductance almost doubled upon DNA hybridization. Thiolate anchoring led to more robust and longer junction configurations compared to NH2 groups. Reasons for the observed conductance enhancement and the anchoring group effect on the overall conductance are being discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-14990S" target="_blank" >GA18-14990S: Páry bazí s vazbou zprostředkovanou kovem; modifikace DNA pro budoucí aplikace v molekulární elektronice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry C
ISSN
2050-7526
e-ISSN
2050-7534
Svazek periodika
10
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
12022-12031
Kód UT WoS článku
000837444200001
EID výsledku v databázi Scopus
2-s2.0-85135723962