Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Toward more accurate adiabatic connection approach for multireference wavefunctions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00568898" target="_blank" >RIV/61388955:_____/23:00568898 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/23:10475778

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0340176" target="_blank" >https://hdl.handle.net/11104/0340176</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0131448" target="_blank" >10.1063/5.0131448</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Toward more accurate adiabatic connection approach for multireference wavefunctions

  • Popis výsledku v původním jazyce

    A multiconfigurational adiabatic connection (AC) formalism is an attractive approach to compute the dynamic correlation within the complete active space self-consistent field and density matrix renormalization group (DMRG) models. Practical realizations of AC have been based on two approximations: (i) fixing one- and two-electron reduced density matrices (1- and 2-RDMs) at the zero-coupling constant limit and (ii) extended random phase approximation (ERPA). This work investigates the effect of removing the ´´fixed-RDM´´approximation in AC. The analysis is carried out for two electronic Hamiltonian partitionings: the group product function- and the Dyall Hamiltonians. Exact reference AC integrands are generated from the DMRG full configuration interaction solver. Two AC models are investigated, employing either exact 1- and 2-RDMs or their second-order expansions in the coupling constant in the ERPA equations. Calculations for model molecules indicate that lifting the fixed-RDM approximation is a viable way toward improving the accuracy of existing AC approximations.

  • Název v anglickém jazyce

    Toward more accurate adiabatic connection approach for multireference wavefunctions

  • Popis výsledku anglicky

    A multiconfigurational adiabatic connection (AC) formalism is an attractive approach to compute the dynamic correlation within the complete active space self-consistent field and density matrix renormalization group (DMRG) models. Practical realizations of AC have been based on two approximations: (i) fixing one- and two-electron reduced density matrices (1- and 2-RDMs) at the zero-coupling constant limit and (ii) extended random phase approximation (ERPA). This work investigates the effect of removing the ´´fixed-RDM´´approximation in AC. The analysis is carried out for two electronic Hamiltonian partitionings: the group product function- and the Dyall Hamiltonians. Exact reference AC integrands are generated from the DMRG full configuration interaction solver. Two AC models are investigated, employing either exact 1- and 2-RDMs or their second-order expansions in the coupling constant in the ERPA equations. Calculations for model molecules indicate that lifting the fixed-RDM approximation is a viable way toward improving the accuracy of existing AC approximations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF23-04302L" target="_blank" >GF23-04302L: Efektivní výpočetní metody pro velké molekuly založené na renormalizační grupě matice hustoty</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    054105

  • Kód UT WoS článku

    000925327200001

  • EID výsledku v databázi Scopus

    2-s2.0-85147543623