Edge-dominated hydrogen evolution reactions in ultra-narrow MoS<inf>2</inf> nanoribbon arrays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00573967" target="_blank" >RIV/61388955:_____/23:00573967 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0344350" target="_blank" >https://hdl.handle.net/11104/0344350</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3ta01573d" target="_blank" >10.1039/d3ta01573d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge-dominated hydrogen evolution reactions in ultra-narrow MoS<inf>2</inf> nanoribbon arrays
Popis výsledku v původním jazyce
Future energy generation and storage requirements emphasize the importance of high-performance electrocatalysis. MoS2 edges exhibit ideal energetics for hydrogen evolution reactions (HERs) if challenges in their kinetics are addressed. Herein, we investigate the emergence of edge-dominated electrochemical reaction kinetics in ultra-narrow MoS2 nanoribbons. A templated subtractive patterning process (TSPP) served as a powerful platform that yields large arrays of MoS2 nanoribbons. Nanoribbons with widths below 30 nm exhibit significantly increased reaction kinetics, as evidenced by a ∼200-fold enhanced turn-over frequency, an 18-fold increased exchange current density, and a 38% decreased Tafel slope. These improvements are due to increased charge transfer efficiency from the basal plane toward the edge sites. Photo-electrocatalytic measurements and carrier transport simulations reveal the impact of suppressed band bending in nanoribbons below the depletion width toward achieving edge-dominated HER. Our results demonstrate the potential of confinement in electrocatalysis and provide a universal route toward nanoribbon-enhanced electrochemistry.
Název v anglickém jazyce
Edge-dominated hydrogen evolution reactions in ultra-narrow MoS<inf>2</inf> nanoribbon arrays
Popis výsledku anglicky
Future energy generation and storage requirements emphasize the importance of high-performance electrocatalysis. MoS2 edges exhibit ideal energetics for hydrogen evolution reactions (HERs) if challenges in their kinetics are addressed. Herein, we investigate the emergence of edge-dominated electrochemical reaction kinetics in ultra-narrow MoS2 nanoribbons. A templated subtractive patterning process (TSPP) served as a powerful platform that yields large arrays of MoS2 nanoribbons. Nanoribbons with widths below 30 nm exhibit significantly increased reaction kinetics, as evidenced by a ∼200-fold enhanced turn-over frequency, an 18-fold increased exchange current density, and a 38% decreased Tafel slope. These improvements are due to increased charge transfer efficiency from the basal plane toward the edge sites. Photo-electrocatalytic measurements and carrier transport simulations reveal the impact of suppressed band bending in nanoribbons below the depletion width toward achieving edge-dominated HER. Our results demonstrate the potential of confinement in electrocatalysis and provide a universal route toward nanoribbon-enhanced electrochemistry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-08633X" target="_blank" >GX20-08633X: ÅrchitektRonika dvoudimenzionálních krystalů se synergií chirálních elektrochemických a optoelektronických konceptů na Å- škále</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Svazek periodika
11
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
15802-15810
Kód UT WoS článku
001019860100001
EID výsledku v databázi Scopus
2-s2.0-85165261468