Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00575872" target="_blank" >RIV/61388955:_____/23:00575872 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0345577" target="_blank" >https://hdl.handle.net/11104/0345577</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2023.108792" target="_blank" >10.1016/j.est.2023.108792</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications
Popis výsledku v původním jazyce
This study developed an advanced thermal energy storage (TES) material consisting of a quinary nitrate salt mixture doped with hybrid MWCNT/TiO2 nanoparticles. The structural, morphology, and thermophysical properties of hybrid MWCNT/TiO2 and hybrid MWCNT/TiO2 doped quinary nitrate salt mixture was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser flash analysis (LFA), viscosity measurement, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and Field environmental scanning electron microscopy and Energy dispersive X-ray (FESEM-EDX) analysis. Furthermore, levelized cost of electricity (LCOE) of concentrated solar power (CSP)-parabolic trough collector (PTC) power plant using the optimized sample as the TES materials were calculated using the “physical trough model” in system advisor model (SAM) software. Based on the result, 0.05 wt% dosage of hybrid MWCNT/TiO2 nanoparticles in the quinary nitrate salt mixture has the most favorable thermophysical properties, with 17.655 % enhancement in average specific heat capacity, 37.769 % enhancement in latent heat, 25.412 % enhancement in average thermal conductivity and 94.77 % decrement in viscosity. Furthermore, SAM simulation studies also showed that the developed TES material could reduce LCOE of the CSP power plant by 1.29 % to 0.1687 USD/kWh. Therefore, in the efforts of replacing the coal-fired electricity generation with the CSP-PTC power plants, it is also possible to achieve a potential annual saving of up to 552 million USD compared to commercial TES materials.
Název v anglickém jazyce
Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications
Popis výsledku anglicky
This study developed an advanced thermal energy storage (TES) material consisting of a quinary nitrate salt mixture doped with hybrid MWCNT/TiO2 nanoparticles. The structural, morphology, and thermophysical properties of hybrid MWCNT/TiO2 and hybrid MWCNT/TiO2 doped quinary nitrate salt mixture was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser flash analysis (LFA), viscosity measurement, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and Field environmental scanning electron microscopy and Energy dispersive X-ray (FESEM-EDX) analysis. Furthermore, levelized cost of electricity (LCOE) of concentrated solar power (CSP)-parabolic trough collector (PTC) power plant using the optimized sample as the TES materials were calculated using the “physical trough model” in system advisor model (SAM) software. Based on the result, 0.05 wt% dosage of hybrid MWCNT/TiO2 nanoparticles in the quinary nitrate salt mixture has the most favorable thermophysical properties, with 17.655 % enhancement in average specific heat capacity, 37.769 % enhancement in latent heat, 25.412 % enhancement in average thermal conductivity and 94.77 % decrement in viscosity. Furthermore, SAM simulation studies also showed that the developed TES material could reduce LCOE of the CSP power plant by 1.29 % to 0.1687 USD/kWh. Therefore, in the efforts of replacing the coal-fired electricity generation with the CSP-PTC power plants, it is also possible to achieve a potential annual saving of up to 552 million USD compared to commercial TES materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
2352-1538
Svazek periodika
73
Číslo periodika v rámci svazku
PART A
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
108792
Kód UT WoS článku
001075036800001
EID výsledku v databázi Scopus
2-s2.0-85170574862