Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00575872" target="_blank" >RIV/61388955:_____/23:00575872 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0345577" target="_blank" >https://hdl.handle.net/11104/0345577</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2023.108792" target="_blank" >10.1016/j.est.2023.108792</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications

  • Popis výsledku v původním jazyce

    This study developed an advanced thermal energy storage (TES) material consisting of a quinary nitrate salt mixture doped with hybrid MWCNT/TiO2 nanoparticles. The structural, morphology, and thermophysical properties of hybrid MWCNT/TiO2 and hybrid MWCNT/TiO2 doped quinary nitrate salt mixture was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser flash analysis (LFA), viscosity measurement, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and Field environmental scanning electron microscopy and Energy dispersive X-ray (FESEM-EDX) analysis. Furthermore, levelized cost of electricity (LCOE) of concentrated solar power (CSP)-parabolic trough collector (PTC) power plant using the optimized sample as the TES materials were calculated using the “physical trough model” in system advisor model (SAM) software. Based on the result, 0.05 wt% dosage of hybrid MWCNT/TiO2 nanoparticles in the quinary nitrate salt mixture has the most favorable thermophysical properties, with 17.655 % enhancement in average specific heat capacity, 37.769 % enhancement in latent heat, 25.412 % enhancement in average thermal conductivity and 94.77 % decrement in viscosity. Furthermore, SAM simulation studies also showed that the developed TES material could reduce LCOE of the CSP power plant by 1.29 % to 0.1687 USD/kWh. Therefore, in the efforts of replacing the coal-fired electricity generation with the CSP-PTC power plants, it is also possible to achieve a potential annual saving of up to 552 million USD compared to commercial TES materials.

  • Název v anglickém jazyce

    Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications

  • Popis výsledku anglicky

    This study developed an advanced thermal energy storage (TES) material consisting of a quinary nitrate salt mixture doped with hybrid MWCNT/TiO2 nanoparticles. The structural, morphology, and thermophysical properties of hybrid MWCNT/TiO2 and hybrid MWCNT/TiO2 doped quinary nitrate salt mixture was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser flash analysis (LFA), viscosity measurement, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and Field environmental scanning electron microscopy and Energy dispersive X-ray (FESEM-EDX) analysis. Furthermore, levelized cost of electricity (LCOE) of concentrated solar power (CSP)-parabolic trough collector (PTC) power plant using the optimized sample as the TES materials were calculated using the “physical trough model” in system advisor model (SAM) software. Based on the result, 0.05 wt% dosage of hybrid MWCNT/TiO2 nanoparticles in the quinary nitrate salt mixture has the most favorable thermophysical properties, with 17.655 % enhancement in average specific heat capacity, 37.769 % enhancement in latent heat, 25.412 % enhancement in average thermal conductivity and 94.77 % decrement in viscosity. Furthermore, SAM simulation studies also showed that the developed TES material could reduce LCOE of the CSP power plant by 1.29 % to 0.1687 USD/kWh. Therefore, in the efforts of replacing the coal-fired electricity generation with the CSP-PTC power plants, it is also possible to achieve a potential annual saving of up to 552 million USD compared to commercial TES materials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

    2352-1538

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    PART A

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    108792

  • Kód UT WoS článku

    001075036800001

  • EID výsledku v databázi Scopus

    2-s2.0-85170574862