Mechanical response of monolayer graphene via a multi-probe approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00584876" target="_blank" >RIV/61388955:_____/24:00584876 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/24:00584876 RIV/61388998:_____/24:00585306
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020740324002509?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020740324002509?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijmecsci.2024.109208" target="_blank" >10.1016/j.ijmecsci.2024.109208</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanical response of monolayer graphene via a multi-probe approach
Popis výsledku v původním jazyce
Push-to-pull (PTP) testing is employed to probe the uniaxial tensile response of freestanding monolayer graphene. Various analytical approaches are employed to estimate the elastic modulus of end-clamped graphene samples, combining in-situ Raman spectroscopy and scanning electronic microscope (SEM) measurements. The utilization of spatially resolved Raman-derived strains for assessing the elastic properties of monolayer graphene leads to results consistent with previous experimental and theoretical values of the elastic modulus (approximately 1 TPa). Molecular dynamics (MD) simulations of (pristine and defective) freestanding graphene sheets uniaxially loaded under varying clamping conditions are performed to support the experimental observations. The computational results indicate that the mechanical responses of the sheets are affected by the type, the spatial profile, and the heterogeneity of the clamping. When uniaxial pulling of end-clamped graphene is applied by a substrate adhering to the graphene sheet through van der Waals forces (as in PTP testing), the elastic modulus may be highly underestimated due to often inhomogeneous stress distribution and slippage processes. The MD simulations predict that the elastic modulus of pristine monolayer graphene is approximately 1 TPa, whereas its fracture strength can reach values of up to 110 GPa. Overall, this study underscores the limitations of traditional analyses of PTP experiments (utilizing indentation readouts and SEM imaging) and proposes new potential avenues (involving Raman measurements) for future research on the elastic properties of 2D materials.
Název v anglickém jazyce
Mechanical response of monolayer graphene via a multi-probe approach
Popis výsledku anglicky
Push-to-pull (PTP) testing is employed to probe the uniaxial tensile response of freestanding monolayer graphene. Various analytical approaches are employed to estimate the elastic modulus of end-clamped graphene samples, combining in-situ Raman spectroscopy and scanning electronic microscope (SEM) measurements. The utilization of spatially resolved Raman-derived strains for assessing the elastic properties of monolayer graphene leads to results consistent with previous experimental and theoretical values of the elastic modulus (approximately 1 TPa). Molecular dynamics (MD) simulations of (pristine and defective) freestanding graphene sheets uniaxially loaded under varying clamping conditions are performed to support the experimental observations. The computational results indicate that the mechanical responses of the sheets are affected by the type, the spatial profile, and the heterogeneity of the clamping. When uniaxial pulling of end-clamped graphene is applied by a substrate adhering to the graphene sheet through van der Waals forces (as in PTP testing), the elastic modulus may be highly underestimated due to often inhomogeneous stress distribution and slippage processes. The MD simulations predict that the elastic modulus of pristine monolayer graphene is approximately 1 TPa, whereas its fracture strength can reach values of up to 110 GPa. Overall, this study underscores the limitations of traditional analyses of PTP experiments (utilizing indentation readouts and SEM imaging) and proposes new potential avenues (involving Raman measurements) for future research on the elastic properties of 2D materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Mechanical Sciences
ISSN
0020-7403
e-ISSN
1879-2162
Svazek periodika
273
Číslo periodika v rámci svazku
JUL 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
109208
Kód UT WoS článku
001222861900001
EID výsledku v databázi Scopus
2-s2.0-85189083676