Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00586720" target="_blank" >RIV/61388955:_____/24:00586720 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10484594
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00064" target="_blank" >https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsearthspacechem.4c00064" target="_blank" >10.1021/acsearthspacechem.4c00064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres
Popis výsledku v původním jazyce
Hydrogen cyanide (HCN), a key molecule of significant importance in contemporary perspectives on prebiotic chemistry, originates in planetary atmospheres from various processes, such as photochemistry, thermochemistry, and impact chemistry, as well as from delivery by impacts. The resilience of HCN during periods of heavy bombardment, a phenomenon caused by an influx of material on unstable trajectories after accretion, remains relatively understudied. This study extensively investigates the stability of HCN under impact conditions simulated using a laboratory Nd:YAG laser in the ELISE experimental setup. High-resolution infrared spectroscopy was employed to monitor the gas phase composition during these simulations. Impact chemistry was simulated in bulk nitrogen atmospheres with varying mixing ratios of HCN and water vapor. The probed range of compositions spans from similar to 0 to 1.8% of HCN and 0 to 2.7% of H2O in a similar to 1 bar nitrogen atmosphere. The primary decomposition products of HCN are CO and CO2 in the presence of water and unidentified solid phase products in dry conditions. Our experiments revealed a range of initial HCN decomposition rates between 2.43 x 10(15) and 5.17 x 10(17) molec J(-1) of input energy depending on the initial composition. Notably, it is shown that the decomposition process induced by the laser spark simulating the impact plasma is nonlinear, with the duration of the irradiation markedly affecting the decomposition rate. These findings underscore the necessity for careful consideration and allowance for margins when applying these rates to chemical models of molecular synthesis and decomposition in planetary atmospheres.
Název v anglickém jazyce
Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres
Popis výsledku anglicky
Hydrogen cyanide (HCN), a key molecule of significant importance in contemporary perspectives on prebiotic chemistry, originates in planetary atmospheres from various processes, such as photochemistry, thermochemistry, and impact chemistry, as well as from delivery by impacts. The resilience of HCN during periods of heavy bombardment, a phenomenon caused by an influx of material on unstable trajectories after accretion, remains relatively understudied. This study extensively investigates the stability of HCN under impact conditions simulated using a laboratory Nd:YAG laser in the ELISE experimental setup. High-resolution infrared spectroscopy was employed to monitor the gas phase composition during these simulations. Impact chemistry was simulated in bulk nitrogen atmospheres with varying mixing ratios of HCN and water vapor. The probed range of compositions spans from similar to 0 to 1.8% of HCN and 0 to 2.7% of H2O in a similar to 1 bar nitrogen atmosphere. The primary decomposition products of HCN are CO and CO2 in the presence of water and unidentified solid phase products in dry conditions. Our experiments revealed a range of initial HCN decomposition rates between 2.43 x 10(15) and 5.17 x 10(17) molec J(-1) of input energy depending on the initial composition. Notably, it is shown that the decomposition process induced by the laser spark simulating the impact plasma is nonlinear, with the duration of the irradiation markedly affecting the decomposition rate. These findings underscore the necessity for careful consideration and allowance for margins when applying these rates to chemical models of molecular synthesis and decomposition in planetary atmospheres.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Earth and Space Chemistry
ISSN
2472-3452
e-ISSN
2472-3452
Svazek periodika
8
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1246-1258
Kód UT WoS článku
001231811600001
EID výsledku v databázi Scopus
2-s2.0-85194234793