Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00586720" target="_blank" >RIV/61388955:_____/24:00586720 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/24:10484594

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00064" target="_blank" >https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00064</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsearthspacechem.4c00064" target="_blank" >10.1021/acsearthspacechem.4c00064</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres

  • Popis výsledku v původním jazyce

    Hydrogen cyanide (HCN), a key molecule of significant importance in contemporary perspectives on prebiotic chemistry, originates in planetary atmospheres from various processes, such as photochemistry, thermochemistry, and impact chemistry, as well as from delivery by impacts. The resilience of HCN during periods of heavy bombardment, a phenomenon caused by an influx of material on unstable trajectories after accretion, remains relatively understudied. This study extensively investigates the stability of HCN under impact conditions simulated using a laboratory Nd:YAG laser in the ELISE experimental setup. High-resolution infrared spectroscopy was employed to monitor the gas phase composition during these simulations. Impact chemistry was simulated in bulk nitrogen atmospheres with varying mixing ratios of HCN and water vapor. The probed range of compositions spans from similar to 0 to 1.8% of HCN and 0 to 2.7% of H2O in a similar to 1 bar nitrogen atmosphere. The primary decomposition products of HCN are CO and CO2 in the presence of water and unidentified solid phase products in dry conditions. Our experiments revealed a range of initial HCN decomposition rates between 2.43 x 10(15) and 5.17 x 10(17) molec J(-1) of input energy depending on the initial composition. Notably, it is shown that the decomposition process induced by the laser spark simulating the impact plasma is nonlinear, with the duration of the irradiation markedly affecting the decomposition rate. These findings underscore the necessity for careful consideration and allowance for margins when applying these rates to chemical models of molecular synthesis and decomposition in planetary atmospheres.

  • Název v anglickém jazyce

    Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres

  • Popis výsledku anglicky

    Hydrogen cyanide (HCN), a key molecule of significant importance in contemporary perspectives on prebiotic chemistry, originates in planetary atmospheres from various processes, such as photochemistry, thermochemistry, and impact chemistry, as well as from delivery by impacts. The resilience of HCN during periods of heavy bombardment, a phenomenon caused by an influx of material on unstable trajectories after accretion, remains relatively understudied. This study extensively investigates the stability of HCN under impact conditions simulated using a laboratory Nd:YAG laser in the ELISE experimental setup. High-resolution infrared spectroscopy was employed to monitor the gas phase composition during these simulations. Impact chemistry was simulated in bulk nitrogen atmospheres with varying mixing ratios of HCN and water vapor. The probed range of compositions spans from similar to 0 to 1.8% of HCN and 0 to 2.7% of H2O in a similar to 1 bar nitrogen atmosphere. The primary decomposition products of HCN are CO and CO2 in the presence of water and unidentified solid phase products in dry conditions. Our experiments revealed a range of initial HCN decomposition rates between 2.43 x 10(15) and 5.17 x 10(17) molec J(-1) of input energy depending on the initial composition. Notably, it is shown that the decomposition process induced by the laser spark simulating the impact plasma is nonlinear, with the duration of the irradiation markedly affecting the decomposition rate. These findings underscore the necessity for careful consideration and allowance for margins when applying these rates to chemical models of molecular synthesis and decomposition in planetary atmospheres.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Earth and Space Chemistry

  • ISSN

    2472-3452

  • e-ISSN

    2472-3452

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    1246-1258

  • Kód UT WoS článku

    001231811600001

  • EID výsledku v databázi Scopus

    2-s2.0-85194234793