Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electrophoretically deposited TiO2 layers for efficient photocatalytic degradation of antibiotic mixture in greywater

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00587303" target="_blank" >RIV/61388955:_____/24:00587303 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22330/24:43928999

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2214714424008869?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214714424008869?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jwpe.2024.105654" target="_blank" >10.1016/j.jwpe.2024.105654</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electrophoretically deposited TiO2 layers for efficient photocatalytic degradation of antibiotic mixture in greywater

  • Popis výsledku v původním jazyce

    Efficient removal of pharmaceuticals from greywater is crucial to enable its application for non-potable use. TiO2 photocatalysis is a promising environmentally friendly way of streamlining their complete degradation. However, dispersed TiO2 nanopowders are unsuitable for greywater treatment procedures because they require separation and may aggregate, thereby losing photocatalytic activity. Thus, TiO2 nanopowders (anatase 5 and 100 nm, AEROXIDE® P 25) were immobilized into layers by quantitative electrophoretic deposition. The layer ability to degrade the commonly used antibiotics ampicillin and sulfathiazole in deionized water was monitored using HPLC-PDA analysis and compared with that of the respective nanopowders. All layers attained total conversion of the initial antibiotics (limit of detection 50–100 μg L−1) with the highest degradation rate constant corresponding to 66 × 10−4 min−1 for AEROXIDE® P25 layer. To evaluate the efficiency of the prepared layers under more realistic conditions, collected greywater was treated in a membrane bioreactor, spiked with an equimolar antibiotic mixture, and subjected to photocatalysis. The overall reaction rate constants were calculated as 54, 15 and 75 × 10−4 min−1 for 5 and 100 nm anatase and AEROXIDE® P25 layers, respectively. The best-performing layer achieved complete removal and 68 % total mineralization of the antibiotic mixture in greywater within 7 and 24 h, respectively. For this layer, the developed regeneration method recovered min. 94 % of the original photocatalytic activity, enabling its reusability. These results suggest that our presented deposition method provides layers capable of degrading antibiotic mixtures in greywater effectively and is suitable for upscaling due to its low cost and simplicity.

  • Název v anglickém jazyce

    Electrophoretically deposited TiO2 layers for efficient photocatalytic degradation of antibiotic mixture in greywater

  • Popis výsledku anglicky

    Efficient removal of pharmaceuticals from greywater is crucial to enable its application for non-potable use. TiO2 photocatalysis is a promising environmentally friendly way of streamlining their complete degradation. However, dispersed TiO2 nanopowders are unsuitable for greywater treatment procedures because they require separation and may aggregate, thereby losing photocatalytic activity. Thus, TiO2 nanopowders (anatase 5 and 100 nm, AEROXIDE® P 25) were immobilized into layers by quantitative electrophoretic deposition. The layer ability to degrade the commonly used antibiotics ampicillin and sulfathiazole in deionized water was monitored using HPLC-PDA analysis and compared with that of the respective nanopowders. All layers attained total conversion of the initial antibiotics (limit of detection 50–100 μg L−1) with the highest degradation rate constant corresponding to 66 × 10−4 min−1 for AEROXIDE® P25 layer. To evaluate the efficiency of the prepared layers under more realistic conditions, collected greywater was treated in a membrane bioreactor, spiked with an equimolar antibiotic mixture, and subjected to photocatalysis. The overall reaction rate constants were calculated as 54, 15 and 75 × 10−4 min−1 for 5 and 100 nm anatase and AEROXIDE® P25 layers, respectively. The best-performing layer achieved complete removal and 68 % total mineralization of the antibiotic mixture in greywater within 7 and 24 h, respectively. For this layer, the developed regeneration method recovered min. 94 % of the original photocatalytic activity, enabling its reusability. These results suggest that our presented deposition method provides layers capable of degrading antibiotic mixtures in greywater effectively and is suitable for upscaling due to its low cost and simplicity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Water Process Engineering

  • ISSN

    2214-7144

  • e-ISSN

    2214-7144

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    JUL 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    105654

  • Kód UT WoS článku

    001299538000001

  • EID výsledku v databázi Scopus

    2-s2.0-85196297629