Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00587607" target="_blank" >RIV/61388955:_____/24:00587607 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0354736" target="_blank" >https://hdl.handle.net/11104/0354736</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.4c02756" target="_blank" >10.1021/acs.jpca.4c02756</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions
Popis výsledku v původním jazyce
The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.
Název v anglickém jazyce
Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions
Popis výsledku anglicky
The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004649" target="_blank" >EH22_008/0004649: Kvantové inženýrství a nanotechnologie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
1520-5215
Svazek periodika
128
Číslo periodika v rámci svazku
27
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
5321-5330
Kód UT WoS článku
001258193400001
EID výsledku v databázi Scopus
2-s2.0-85197102259