Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stellar Wind Contribution to the Origin of Water on the Surface of Oxygen-containing Minerals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00600171" target="_blank" >RIV/61388955:_____/24:00600171 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61388963:_____/24:00600171

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ad77cd" target="_blank" >https://iopscience.iop.org/article/10.3847/1538-4357/ad77cd</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ad77cd" target="_blank" >10.3847/1538-4357/ad77cd</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stellar Wind Contribution to the Origin of Water on the Surface of Oxygen-containing Minerals

  • Popis výsledku v původním jazyce

    The origin of water and volatile compounds on planets including Earth is a hotly debated topic in planetary science. For example, many dynamic models suggest that the majority of Earth's water and volatile elements were added from an external source. The stellar wind irradiation of rocky oxygen-containing minerals results in a reaction between H+ ions and silicate minerals to produce water and OH, which could explain the presence of water in the regoliths of airless worlds such as the Moon, as well as the water abundances in asteroids. Here, we used the method of high-resolution infrared spectrometry and temperature-programmed desorption (TPD) with mass detection to observe and for the first time quantify water formation on the surfaces of oxygen-bearing minerals. We tested 14 different mineral and natural samples and observed the formation of water on their surfaces upon exposure to H+ or D+ irradiation. The samples, including two meteorite samples (RAS 445 and SAU 567), were shown to have a water adsorption capacity between 0.09 and 0.7 wt%. The adsorbed water (likely dissociatively adsorbed) remains on the surface at pressures as low as 10-9 mbar (in the TPD experiment) and temperatures as high as 600 K, which suggests a possible transfer over long distances and timescales. Our article has a general character and demonstrates that any interaction of oxygen-containing minerals with stellar radiation (H+ ions) leads to the generation of water adsorbed on the surface of the minerals. The case of the origin of water on Earth is taken as a prime example.

  • Název v anglickém jazyce

    Stellar Wind Contribution to the Origin of Water on the Surface of Oxygen-containing Minerals

  • Popis výsledku anglicky

    The origin of water and volatile compounds on planets including Earth is a hotly debated topic in planetary science. For example, many dynamic models suggest that the majority of Earth's water and volatile elements were added from an external source. The stellar wind irradiation of rocky oxygen-containing minerals results in a reaction between H+ ions and silicate minerals to produce water and OH, which could explain the presence of water in the regoliths of airless worlds such as the Moon, as well as the water abundances in asteroids. Here, we used the method of high-resolution infrared spectrometry and temperature-programmed desorption (TPD) with mass detection to observe and for the first time quantify water formation on the surfaces of oxygen-bearing minerals. We tested 14 different mineral and natural samples and observed the formation of water on their surfaces upon exposure to H+ or D+ irradiation. The samples, including two meteorite samples (RAS 445 and SAU 567), were shown to have a water adsorption capacity between 0.09 and 0.7 wt%. The adsorbed water (likely dissociatively adsorbed) remains on the surface at pressures as low as 10-9 mbar (in the TPD experiment) and temperatures as high as 600 K, which suggests a possible transfer over long distances and timescales. Our article has a general character and demonstrates that any interaction of oxygen-containing minerals with stellar radiation (H+ ions) leads to the generation of water adsorbed on the surface of the minerals. The case of the origin of water on Earth is taken as a prime example.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023066" target="_blank" >LM2023066: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Svazek periodika

    975

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    25

  • Kód UT WoS článku

    001339482400001

  • EID výsledku v databázi Scopus

    2-s2.0-85207702931