Coulomb explosion during the early stages of the reaction of alkali metals with water
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F15%3A00443646" target="_blank" >RIV/61388963:_____/15:00443646 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1038/NCHEM.2161" target="_blank" >http://dx.doi.org/10.1038/NCHEM.2161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/NCHEM.2161" target="_blank" >10.1038/NCHEM.2161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coulomb explosion during the early stages of the reaction of alkali metals with water
Popis výsledku v původním jazyce
Alkali metals can react explosively with water and it is textbook knowledge that this vigorous behaviour results from heat release, steam formation and ignition of the hydrogen gas that is produced. Here we suggest that the initial process enabling the alkali metal explosion in water is, however, of a completely different nature. High-speed camera imaging of liquid drops of a sodium/potassium alloy in water reveals submillisecond formation of metal spikes that protrude from the surface of the drop. Molecular dynamics simulations demonstrate that on immersion in water there is an almost immediate release of electrons from the metal surface. The system thus quickly reaches the Rayleigh instability limit, which leads to a 'coulomb explosion' of the alkalimetal drop. Consequently, a new metal surface in contact with water is formed, which explains why the reaction does not become self-quenched by its products, but can rather lead to explosive behaviour.
Název v anglickém jazyce
Coulomb explosion during the early stages of the reaction of alkali metals with water
Popis výsledku anglicky
Alkali metals can react explosively with water and it is textbook knowledge that this vigorous behaviour results from heat release, steam formation and ignition of the hydrogen gas that is produced. Here we suggest that the initial process enabling the alkali metal explosion in water is, however, of a completely different nature. High-speed camera imaging of liquid drops of a sodium/potassium alloy in water reveals submillisecond formation of metal spikes that protrude from the surface of the drop. Molecular dynamics simulations demonstrate that on immersion in water there is an almost immediate release of electrons from the metal surface. The system thus quickly reaches the Rayleigh instability limit, which leads to a 'coulomb explosion' of the alkalimetal drop. Consequently, a new metal surface in contact with water is formed, which explains why the reaction does not become self-quenched by its products, but can rather lead to explosive behaviour.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP208%2F12%2FG016" target="_blank" >GBP208/12/G016: Řízení struktury a funkce biomolekul na molekulové úrovni: souhra teorie a experimentu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Chemistry
ISSN
1755-4330
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
5
Strana od-do
250-254
Kód UT WoS článku
000350115700015
EID výsledku v databázi Scopus
2-s2.0-84923338638