Graphene oxide immobilized enzymes show high thermal and solvent stability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F15%3A00443878" target="_blank" >RIV/61388963:_____/15:00443878 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/15:43899655
Výsledek na webu
<a href="http://pubs.rsc.org/en/content/articlepdf/2015/nr/c5nr00438a" target="_blank" >http://pubs.rsc.org/en/content/articlepdf/2015/nr/c5nr00438a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c5nr00438a" target="_blank" >10.1039/c5nr00438a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graphene oxide immobilized enzymes show high thermal and solvent stability
Popis výsledku v původním jazyce
The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 degrees C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 degrees C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solve
Název v anglickém jazyce
Graphene oxide immobilized enzymes show high thermal and solvent stability
Popis výsledku anglicky
The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 degrees C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 degrees C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solve
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CC - Organická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-09001S" target="_blank" >GA15-09001S: Chemické modifikace materiálů na bázi grafenu: Syntéza grafanu a halogengrafenu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nanoscale
ISSN
2040-3364
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
5852-5858
Kód UT WoS článku
000351619600036
EID výsledku v databázi Scopus
2-s2.0-84925326333