Reaction Path Averaging: Characterizing the Structural Response of the DNA Double Helix to Electron Transfer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F17%3A00475019" target="_blank" >RIV/61388963:_____/17:00475019 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jpcb.6b12109" target="_blank" >http://dx.doi.org/10.1021/acs.jpcb.6b12109</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.6b12109" target="_blank" >10.1021/acs.jpcb.6b12109</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reaction Path Averaging: Characterizing the Structural Response of the DNA Double Helix to Electron Transfer
Popis výsledku v původním jazyce
A polarizable environment, prominently the solvent, responds to electronic changes in biomolecules rapidly. The knowledge of conformational relaxation of the biomolecule itself, however, may be scarce or missing. In this work, we describe in detail the structural changes in DNA undergoing electron transfer between two adjacent nucleobases. We employ an approach based on averaging of tens to hundreds of thousands of nonequilibrium trajectories generated with molecular dynamics simulation, and a reduction of dimensionality suitable for DNA. We show that the conformational response of the DNA proceeds along a single collective coordinate that represents the relative orientation of two consecutive base pairs, namely, a combination of helical parameters tilt. The structure of DNA relaxes on time scales reaching nanoseconds, contributing marginally to the relaxation of energies, which is dominated by the modes of motion of the aqueous solvent. The concept of reaction path averaging (RPA), conveniently exploited in this context, makes it possible to filter out any undesirable noise from the nonequilibrium data, and is applicable to any chemical process in general.
Název v anglickém jazyce
Reaction Path Averaging: Characterizing the Structural Response of the DNA Double Helix to Electron Transfer
Popis výsledku anglicky
A polarizable environment, prominently the solvent, responds to electronic changes in biomolecules rapidly. The knowledge of conformational relaxation of the biomolecule itself, however, may be scarce or missing. In this work, we describe in detail the structural changes in DNA undergoing electron transfer between two adjacent nucleobases. We employ an approach based on averaging of tens to hundreds of thousands of nonequilibrium trajectories generated with molecular dynamics simulation, and a reduction of dimensionality suitable for DNA. We show that the conformational response of the DNA proceeds along a single collective coordinate that represents the relative orientation of two consecutive base pairs, namely, a combination of helical parameters tilt. The structure of DNA relaxes on time scales reaching nanoseconds, contributing marginally to the relaxation of energies, which is dominated by the modes of motion of the aqueous solvent. The concept of reaction path averaging (RPA), conveniently exploited in this context, makes it possible to filter out any undesirable noise from the nonequilibrium data, and is applicable to any chemical process in general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
121
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1520-1532
Kód UT WoS článku
000394925700007
EID výsledku v databázi Scopus
2-s2.0-85027272137