Exploring the “Goldilocks Zone” of Semiconducting Polymer Photocatalysts by Donor-Acceptor Interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F18%3A00495849" target="_blank" >RIV/61388963:_____/18:00495849 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/18:10383128
Výsledek na webu
<a href="http://dx.doi.org/10.1002/anie.201809702" target="_blank" >http://dx.doi.org/10.1002/anie.201809702</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/anie.201809702" target="_blank" >10.1002/anie.201809702</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the “Goldilocks Zone” of Semiconducting Polymer Photocatalysts by Donor-Acceptor Interactions
Popis výsledku v původním jazyce
Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine -conjugated electron-withdrawing triazine (C3N3) and electron donating, sulfur-containing moieties as covalently bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects.
Název v anglickém jazyce
Exploring the “Goldilocks Zone” of Semiconducting Polymer Photocatalysts by Donor-Acceptor Interactions
Popis výsledku anglicky
Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine -conjugated electron-withdrawing triazine (C3N3) and electron donating, sulfur-containing moieties as covalently bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Angewandte Chemie - International Edition
ISSN
1433-7851
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
43
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
5
Strana od-do
14188-14192
Kód UT WoS článku
000447371500036
EID výsledku v databázi Scopus
2-s2.0-85053860423