Can All-Atom Molecular Dynamics Simulations Quantitatively Describe Homeodomain-DNA Binding Equilibria?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F19%3A00504470" target="_blank" >RIV/61388963:_____/19:00504470 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/19:10409808
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jctc.8b01144" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.8b01144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.8b01144" target="_blank" >10.1021/acs.jctc.8b01144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can All-Atom Molecular Dynamics Simulations Quantitatively Describe Homeodomain-DNA Binding Equilibria?
Popis výsledku v původním jazyce
We systematically investigate the applicability of a molecular dynamics-based setup for the calculations of standard binding free energies of biologically relevant protein-DNA complexes. The free energies are extracted from a potential of mean force calculated using umbrella sampling simulations. Two protein-DNA systems derived from a homeodomain transcription factor complex are studied in order to investigate the binding of both disordered and globular proteins. Free energies and trajectories obtained using two modern molecular mechanical force fields are compared to each other and to experimental data. The temperature dependence of the calculated standard binding free energies is investigated by performing all simulations over a range of temperatures. We show that the values of standard binding free energies obtained from these simulations are overestimated compared to experimental results. Significant differences are observed between the two protein-DNA systems and between the two force fields, which are explained by different propensities to form inter- and intramolecular contacts. The number of protein-DNA contacts increases with increasing temperature, in agreement with the experimentally known temperature dependence of enthalpies of binding. However, conclusions about the temperature dependence of the standard binding free energies cannot be made with confidence, as the differences among the values are on the order of statistical uncertainty.
Název v anglickém jazyce
Can All-Atom Molecular Dynamics Simulations Quantitatively Describe Homeodomain-DNA Binding Equilibria?
Popis výsledku anglicky
We systematically investigate the applicability of a molecular dynamics-based setup for the calculations of standard binding free energies of biologically relevant protein-DNA complexes. The free energies are extracted from a potential of mean force calculated using umbrella sampling simulations. Two protein-DNA systems derived from a homeodomain transcription factor complex are studied in order to investigate the binding of both disordered and globular proteins. Free energies and trajectories obtained using two modern molecular mechanical force fields are compared to each other and to experimental data. The temperature dependence of the calculated standard binding free energies is investigated by performing all simulations over a range of temperatures. We show that the values of standard binding free energies obtained from these simulations are overestimated compared to experimental results. Significant differences are observed between the two protein-DNA systems and between the two force fields, which are explained by different propensities to form inter- and intramolecular contacts. The number of protein-DNA contacts increases with increasing temperature, in agreement with the experimentally known temperature dependence of enthalpies of binding. However, conclusions about the temperature dependence of the standard binding free energies cannot be made with confidence, as the differences among the values are on the order of statistical uncertainty.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2635-2648
Kód UT WoS článku
000464475500043
EID výsledku v databázi Scopus
2-s2.0-85064167869