Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F19%3A00517654" target="_blank" >RIV/61388963:_____/19:00517654 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02652" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02652</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.9b02652" target="_blank" >10.1021/acs.jpclett.9b02652</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations
Popis výsledku v původním jazyce
Electronic polarization effects play an important role in the interactions of charged species in biologically relevant aqueous solutions, such as those involving salt ions, proteins, nucleic acids, or phospholipid membranes. Explicit inclusion of electronic polarization in molecular modeling is tedious both from the point of view of force field parametrization and actual performance of the simulations. Therefore, the vast majority of biomolecular simulations is performed using nonpolarizable force fields, which can lead to artifacts such as dramatically overestimated ion pairing, particularly when polyvalent ions are involved. Here, we show that many of these issues can be remedied without extra computational costs by including electronic polarization in a mean field way via charge rescaling. We also lay the solid physical foundations of this approach and reconcile from this perspective the microscopic versus macroscopic natures of nonpolarizable force fields.
Název v anglickém jazyce
Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations
Popis výsledku anglicky
Electronic polarization effects play an important role in the interactions of charged species in biologically relevant aqueous solutions, such as those involving salt ions, proteins, nucleic acids, or phospholipid membranes. Explicit inclusion of electronic polarization in molecular modeling is tedious both from the point of view of force field parametrization and actual performance of the simulations. Therefore, the vast majority of biomolecular simulations is performed using nonpolarizable force fields, which can lead to artifacts such as dramatically overestimated ion pairing, particularly when polyvalent ions are involved. Here, we show that many of these issues can be remedied without extra computational costs by including electronic polarization in a mean field way via charge rescaling. We also lay the solid physical foundations of this approach and reconcile from this perspective the microscopic versus macroscopic natures of nonpolarizable force fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26854X" target="_blank" >GX19-26854X: Souhra lipidů, iontů a bílkovin a její role v dynamice a funkci buněčných membrán</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Letters
ISSN
1948-7185
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
7531-7536
Kód UT WoS článku
000501622700034
EID výsledku v databázi Scopus
2-s2.0-85075597341