Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rotational Diffusion of Membrane Proteins in Crowded Membranes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00524096" target="_blank" >RIV/61388963:_____/20:00524096 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.0c00884" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.0c00884</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcb.0c00884" target="_blank" >10.1021/acs.jpcb.0c00884</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rotational Diffusion of Membrane Proteins in Crowded Membranes

  • Popis výsledku v původním jazyce

    Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and proteinlipid complexes. Following the Saffman-Delbruck model, protein-radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbruck model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.

  • Název v anglickém jazyce

    Rotational Diffusion of Membrane Proteins in Crowded Membranes

  • Popis výsledku anglicky

    Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and proteinlipid complexes. Following the Saffman-Delbruck model, protein-radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbruck model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26854X" target="_blank" >GX19-26854X: Souhra lipidů, iontů a bílkovin a její role v dynamice a funkci buněčných membrán</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry B

  • ISSN

    1520-6106

  • e-ISSN

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    2994-3001

  • Kód UT WoS článku

    000526368900003

  • EID výsledku v databázi Scopus

    2-s2.0-85083545186