Rotational Diffusion of Membrane Proteins in Crowded Membranes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00524096" target="_blank" >RIV/61388963:_____/20:00524096 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.0c00884" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.0c00884</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.0c00884" target="_blank" >10.1021/acs.jpcb.0c00884</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rotational Diffusion of Membrane Proteins in Crowded Membranes
Popis výsledku v původním jazyce
Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and proteinlipid complexes. Following the Saffman-Delbruck model, protein-radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbruck model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.
Název v anglickém jazyce
Rotational Diffusion of Membrane Proteins in Crowded Membranes
Popis výsledku anglicky
Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and proteinlipid complexes. Following the Saffman-Delbruck model, protein-radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbruck model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26854X" target="_blank" >GX19-26854X: Souhra lipidů, iontů a bílkovin a její role v dynamice a funkci buněčných membrán</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
2994-3001
Kód UT WoS článku
000526368900003
EID výsledku v databázi Scopus
2-s2.0-85083545186