Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interplay between Conformational Strain and Intramolecular Interaction in Protein Structures: Which of Them Is Evolutionarily Conserved?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00524184" target="_blank" >RIV/61388963:_____/20:00524184 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.9b11784" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.9b11784</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcb.9b11784" target="_blank" >10.1021/acs.jpcb.9b11784</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interplay between Conformational Strain and Intramolecular Interaction in Protein Structures: Which of Them Is Evolutionarily Conserved?

  • Popis výsledku v původním jazyce

    By computing strain energies of peptide fragments within protein structures and their intramolecular interaction energies, we attempt to reveal general biophysical trends behind the secondary structure formation in the context of protein evolution. Our “protein basis set” consisted of 1143 representatives of different folds obtained from curated SCOPe database, and for each member of the set, the strain and intramolecular energy was calculated on the “rolling tripeptide” basis, employing the DFT-D3/COSMO-RS method for the former and the QM-calibrated force field method (MM) for the latter. The calculated data, strain and interactions, were correlated with the conservation of amino acid residues in secondary structure elements and also with the level of the residue burial within the protein three-dimensional structure. It allowed us to formulate several observations concerning fundamental differences between two main secondary structure motifs: α-helices and β-strands. We have shown that a strong interaction is one of the determining characteristics of the β-sheet formation, at least at the level of tripeptides (and likely penta- or heptapeptides, too), and that the β-strand is a prevailing secondary structure in the strongly-interacting regions of the protein folds conserved by evolution. On the other hand, low strain was neither proven to be an important physicochemical property conserved by evolution nor does it correlate with the propensity for the α-helix and β-strand. Finally, it has been demonstrated that the strong interaction has a certain level of connection with residue burial, however, we demonstrate that these two characteristics should be rather regarded as two complementary factors. These findings represent an important contribution to understanding protein folding from first principles, which is a complementary approach to ongoing efforts to solve the protein folding problem by knowledge-based approaches and machine-learning.

  • Název v anglickém jazyce

    Interplay between Conformational Strain and Intramolecular Interaction in Protein Structures: Which of Them Is Evolutionarily Conserved?

  • Popis výsledku anglicky

    By computing strain energies of peptide fragments within protein structures and their intramolecular interaction energies, we attempt to reveal general biophysical trends behind the secondary structure formation in the context of protein evolution. Our “protein basis set” consisted of 1143 representatives of different folds obtained from curated SCOPe database, and for each member of the set, the strain and intramolecular energy was calculated on the “rolling tripeptide” basis, employing the DFT-D3/COSMO-RS method for the former and the QM-calibrated force field method (MM) for the latter. The calculated data, strain and interactions, were correlated with the conservation of amino acid residues in secondary structure elements and also with the level of the residue burial within the protein three-dimensional structure. It allowed us to formulate several observations concerning fundamental differences between two main secondary structure motifs: α-helices and β-strands. We have shown that a strong interaction is one of the determining characteristics of the β-sheet formation, at least at the level of tripeptides (and likely penta- or heptapeptides, too), and that the β-strand is a prevailing secondary structure in the strongly-interacting regions of the protein folds conserved by evolution. On the other hand, low strain was neither proven to be an important physicochemical property conserved by evolution nor does it correlate with the propensity for the α-helix and β-strand. Finally, it has been demonstrated that the strong interaction has a certain level of connection with residue burial, however, we demonstrate that these two characteristics should be rather regarded as two complementary factors. These findings represent an important contribution to understanding protein folding from first principles, which is a complementary approach to ongoing efforts to solve the protein folding problem by knowledge-based approaches and machine-learning.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-08772S" target="_blank" >GA20-08772S: Objevování základních principů struktury proteinů a protein-ligandových komplexů pokročilými metodami kvantové chemie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry B

  • ISSN

    1520-6106

  • e-ISSN

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    16

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    3252-3260

  • Kód UT WoS článku

    000529216600002

  • EID výsledku v databázi Scopus

    2-s2.0-85084027819