Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00524765" target="_blank" >RIV/61388963:_____/20:00524765 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/jacs.9b13769" target="_blank" >https://pubs.acs.org/doi/10.1021/jacs.9b13769</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jacs.9b13769" target="_blank" >10.1021/jacs.9b13769</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes
Popis výsledku v původním jazyce
Benzene exhibits a rich photochemistry which can provide access to complex molecular scaffolds difficult to access with reactions in the electronic ground state. While benzene is aromatic in its ground state it is antiaromatic in its lowest ππ* excited states. Herein, we clarify to what extent relief of excited state antiaromaticity (ESAA) triggers a fundamental benzene photoreaction: the photoinitiated nucleophilic addition of solvent to benzene in acidic media leading to substituted bicyclo[3.1.0]hex-2-enes. The reaction scope was probed experimentally and it was found that silyl substituted benzenes provide the most rapid access to bicyclo[3.1.0]hexene derivatives, formed as single isomers with three stereogenic centers in yields up to 75% in one step. Two major mechanism hypotheses, both involving ESAA relief, were explored through quantum chemical calculations and experiments. The first mechanism involves protonation of excited state benzene and subsequent rearrangement to bicyclo[3.1.0]hexenium cation, trapped by a nucleophile, while the second involves photorearrangement of benzene to benzvalene followed by protonation and nucleophilic addition. Our studies reveal that the second mechanism is operative. We also clarify that similar ESAA relief leads to puckering of S1 state silabenzene and pyridinium ion, where the photorearrangement of the latter is of established synthetic utility. Finally, we identified causes for the limitations of the reaction, information that should be valuable in explorations of similar photoreactions. Taken together, we reveal how the ESAA in benzene and 6π-electron heterocycles trigger photochemical distortions that provide access to complex three-dimensional molecular scaffolds from simple reactants.
Název v anglickém jazyce
Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes
Popis výsledku anglicky
Benzene exhibits a rich photochemistry which can provide access to complex molecular scaffolds difficult to access with reactions in the electronic ground state. While benzene is aromatic in its ground state it is antiaromatic in its lowest ππ* excited states. Herein, we clarify to what extent relief of excited state antiaromaticity (ESAA) triggers a fundamental benzene photoreaction: the photoinitiated nucleophilic addition of solvent to benzene in acidic media leading to substituted bicyclo[3.1.0]hex-2-enes. The reaction scope was probed experimentally and it was found that silyl substituted benzenes provide the most rapid access to bicyclo[3.1.0]hexene derivatives, formed as single isomers with three stereogenic centers in yields up to 75% in one step. Two major mechanism hypotheses, both involving ESAA relief, were explored through quantum chemical calculations and experiments. The first mechanism involves protonation of excited state benzene and subsequent rearrangement to bicyclo[3.1.0]hexenium cation, trapped by a nucleophile, while the second involves photorearrangement of benzene to benzvalene followed by protonation and nucleophilic addition. Our studies reveal that the second mechanism is operative. We also clarify that similar ESAA relief leads to puckering of S1 state silabenzene and pyridinium ion, where the photorearrangement of the latter is of established synthetic utility. Finally, we identified causes for the limitations of the reaction, information that should be valuable in explorations of similar photoreactions. Taken together, we reveal how the ESAA in benzene and 6π-electron heterocycles trigger photochemical distortions that provide access to complex three-dimensional molecular scaffolds from simple reactants.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10401 - Organic chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-20467Y" target="_blank" >GJ19-20467Y: Světlem řízené systémy pro reversibilní separaci nábojů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Chemical Society
ISSN
0002-7863
e-ISSN
—
Svazek periodika
142
Číslo periodika v rámci svazku
25
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
10942-10954
Kód UT WoS článku
000543780500011
EID výsledku v databázi Scopus
2-s2.0-85087034116