Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00531712" target="_blank" >RIV/61388963:_____/20:00531712 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apenergy.2020.115557" target="_blank" >https://doi.org/10.1016/j.apenergy.2020.115557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apenergy.2020.115557" target="_blank" >10.1016/j.apenergy.2020.115557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts
Popis výsledku v původním jazyce
An increase in atmospheric CO2 concentration is directly associated with the rising concerns of climate change and energy issues. The development of effective technologies for capture and utilization of atmospheric CO2 is required to mitigate these global challenges. Electrochemical CO2 reduction (eCO2R) is one of the most promising approaches for the conversion of excess renewable energy sources into storable fuels and value-added chemicals. This field has recently advanced enormously with impressive research achievements aiming at bringing the technology on the brink of commercial realization. Herein, we present a comprehensive review analyzing the recent progress and opportunities of using different cell designs with the main focus on membrane-based flow cells for eCO2R, along with the required system-level strategies for optimal engineering to enhance electrocatalytic selectivity and efficiency. Research advance on the use of different polymer electrolyte membranes for CO2 electrolyzers is updated. Main achievements in new catalyst discoveries are assessed in terms of activity, selectivity, stability together with CO2R reaction kinetics. This was supported by the analysis of the computational studies performed to devise the effective catalyst design routes and to understand the pathways for CO2Rs. The interactive effect of the design of reactors and gas diffusion electrodes with catalysts is analyzed for different operating conditions (like pH, temperature and pressure) of CO2 electrolyzers. Finally, an outlook on future research directions in terms of material and process design for a breakthrough in eCO2R technologies is provided.
Název v anglickém jazyce
Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts
Popis výsledku anglicky
An increase in atmospheric CO2 concentration is directly associated with the rising concerns of climate change and energy issues. The development of effective technologies for capture and utilization of atmospheric CO2 is required to mitigate these global challenges. Electrochemical CO2 reduction (eCO2R) is one of the most promising approaches for the conversion of excess renewable energy sources into storable fuels and value-added chemicals. This field has recently advanced enormously with impressive research achievements aiming at bringing the technology on the brink of commercial realization. Herein, we present a comprehensive review analyzing the recent progress and opportunities of using different cell designs with the main focus on membrane-based flow cells for eCO2R, along with the required system-level strategies for optimal engineering to enhance electrocatalytic selectivity and efficiency. Research advance on the use of different polymer electrolyte membranes for CO2 electrolyzers is updated. Main achievements in new catalyst discoveries are assessed in terms of activity, selectivity, stability together with CO2R reaction kinetics. This was supported by the analysis of the computational studies performed to devise the effective catalyst design routes and to understand the pathways for CO2Rs. The interactive effect of the design of reactors and gas diffusion electrodes with catalysts is analyzed for different operating conditions (like pH, temperature and pressure) of CO2 electrolyzers. Finally, an outlook on future research directions in terms of material and process design for a breakthrough in eCO2R technologies is provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Energy
ISSN
0306-2619
e-ISSN
—
Svazek periodika
277
Číslo periodika v rámci svazku
Nov 1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
40
Strana od-do
115557
Kód UT WoS článku
000579393800055
EID výsledku v databázi Scopus
2-s2.0-85089272793