Closed Shell Iron(IV) Oxo Complex with an Fe–O Triple Bond: Computational Design, Synthesis, and Reactivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00534141" target="_blank" >RIV/61388963:_____/20:00534141 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/anie.202009347" target="_blank" >https://doi.org/10.1002/anie.202009347</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/anie.202009347" target="_blank" >10.1002/anie.202009347</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closed Shell Iron(IV) Oxo Complex with an Fe–O Triple Bond: Computational Design, Synthesis, and Reactivity
Popis výsledku v původním jazyce
Iron(IV)‐oxo intermediates in nature contain two unpaired electrons in the Fe–O antibonding orbitals, which are thought to contribute to their high reactivity. To challenge this hypothesis, we designed and synthesized closed‐shell singlet iron(IV) oxo complex [(quinisox)Fe(O)]+ (1+, quinisox‐H=(N‐(2‐(2‐isoxazoline‐3‐yl)phenyl)quinoline‐8‐carboxamide). We identified the quinisox ligand by DFT computational screening out of over 450 candidates. After the ligand synthesis, we detected 1+ in the gas phase and confirmed its spin state by visible and infrared photodissociation spectroscopy (IRPD). The Fe–O stretching frequency in 1+ is 960.5 cm−1, consistent with an Fe–O triple bond, which was also confirmed by multireference calculations. The unprecedented bond strength is accompanied by high gas‐phase reactivity of 1+ in oxygen atom transfer (OAT) and in proton‐coupled electron transfer reactions. This challenges the current view of the spin‐state driven reactivity of the Fe–O complexes.
Název v anglickém jazyce
Closed Shell Iron(IV) Oxo Complex with an Fe–O Triple Bond: Computational Design, Synthesis, and Reactivity
Popis výsledku anglicky
Iron(IV)‐oxo intermediates in nature contain two unpaired electrons in the Fe–O antibonding orbitals, which are thought to contribute to their high reactivity. To challenge this hypothesis, we designed and synthesized closed‐shell singlet iron(IV) oxo complex [(quinisox)Fe(O)]+ (1+, quinisox‐H=(N‐(2‐(2‐isoxazoline‐3‐yl)phenyl)quinoline‐8‐carboxamide). We identified the quinisox ligand by DFT computational screening out of over 450 candidates. After the ligand synthesis, we detected 1+ in the gas phase and confirmed its spin state by visible and infrared photodissociation spectroscopy (IRPD). The Fe–O stretching frequency in 1+ is 960.5 cm−1, consistent with an Fe–O triple bond, which was also confirmed by multireference calculations. The unprecedented bond strength is accompanied by high gas‐phase reactivity of 1+ in oxygen atom transfer (OAT) and in proton‐coupled electron transfer reactions. This challenges the current view of the spin‐state driven reactivity of the Fe–O complexes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19148" target="_blank" >LTAUSA19148: Mono- a binukleární Fe, Cu aktivní místa v biologických systémech: souhra mezi experimentem a teorií</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Angewandte Chemie - International Edition
ISSN
1433-7851
e-ISSN
—
Svazek periodika
59
Číslo periodika v rámci svazku
51
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
23137-23144
Kód UT WoS článku
000585630800001
EID výsledku v databázi Scopus
2-s2.0-85094186491