Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structure and single particle dynamics of the vapour-liquid interface of acetone-CO2 mixtures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F21%3A00542155" target="_blank" >RIV/61388963:_____/21:00542155 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.molliq.2021.116091" target="_blank" >https://doi.org/10.1016/j.molliq.2021.116091</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.molliq.2021.116091" target="_blank" >10.1016/j.molliq.2021.116091</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structure and single particle dynamics of the vapour-liquid interface of acetone-CO2 mixtures

  • Popis výsledku v původním jazyce

    Molecular dynamics computer simulations of the liquid-vapour interface of acetone-CO2 mixtures are performed in the canonical (N,V,T) ensemble at 30 thermodynamic state points, ranging from 280 to 460 K and from about 10 to 116 bar, covering the entire composition range from neat CO2 to neat acetone. The molecules forming the first layer at the molecularly rough liquid surface as well as those of the next three subsurface molecular layers have been identified by the ITIM method, and the surface properties of the liquid phase are analyzed in a layer-wise manner. The arrangement of the molecules both within the macroscopic plane of the interface and along its normal axis, as well as their surface orientation and single particle dynamics at the liquid surface are analyzed in detail. It is found that, in accordance with their higher affinity to the vapour phase, CO2 molecules are enriched at the liquid surface, moreover, even within the surface layer they prefer to occupy positions that are more exposed to the bulk vapour phase than those preferred by acetone. In other words, within the molecularly wavy surface layer, CO2 molecules prefer to stay at the crests, while acetone molecules prefer to stay in the troughs. On the other hand, the lateral arrangement of the surface molecules is found to be more or less random. Both molecules prefer to stay perpendicular to the liquid surface, but this preference only involves the first molecular layer, and this preference is governed by the electrostatic interaction of the surface molecules. Both molecules perform considerable lateral diffusion at the liquid surface during their stay there, this diffusion being faster for the CO2 than for the acetone molecules, but not as much faster than in the bulk liquid phase.

  • Název v anglickém jazyce

    Structure and single particle dynamics of the vapour-liquid interface of acetone-CO2 mixtures

  • Popis výsledku anglicky

    Molecular dynamics computer simulations of the liquid-vapour interface of acetone-CO2 mixtures are performed in the canonical (N,V,T) ensemble at 30 thermodynamic state points, ranging from 280 to 460 K and from about 10 to 116 bar, covering the entire composition range from neat CO2 to neat acetone. The molecules forming the first layer at the molecularly rough liquid surface as well as those of the next three subsurface molecular layers have been identified by the ITIM method, and the surface properties of the liquid phase are analyzed in a layer-wise manner. The arrangement of the molecules both within the macroscopic plane of the interface and along its normal axis, as well as their surface orientation and single particle dynamics at the liquid surface are analyzed in detail. It is found that, in accordance with their higher affinity to the vapour phase, CO2 molecules are enriched at the liquid surface, moreover, even within the surface layer they prefer to occupy positions that are more exposed to the bulk vapour phase than those preferred by acetone. In other words, within the molecularly wavy surface layer, CO2 molecules prefer to stay at the crests, while acetone molecules prefer to stay in the troughs. On the other hand, the lateral arrangement of the surface molecules is found to be more or less random. Both molecules prefer to stay perpendicular to the liquid surface, but this preference only involves the first molecular layer, and this preference is governed by the electrostatic interaction of the surface molecules. Both molecules perform considerable lateral diffusion at the liquid surface during their stay there, this diffusion being faster for the CO2 than for the acetone molecules, but not as much faster than in the bulk liquid phase.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Molecular Liquids

  • ISSN

    0167-7322

  • e-ISSN

    1873-3166

  • Svazek periodika

    334

  • Číslo periodika v rámci svazku

    Jul 15

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    116091

  • Kód UT WoS článku

    000661396500069

  • EID výsledku v databázi Scopus

    2-s2.0-85104584753