Charge-Tagged Nucleosides in the Gas Phase: UV–Vis Action Spectroscopy and Structures of Cytidine Cations, Dications, and Cation Radicals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F21%3A00544512" target="_blank" >RIV/61388963:_____/21:00544512 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1021/acs.jpca.1c03477" target="_blank" >https://doi.org/10.1021/acs.jpca.1c03477</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.1c03477" target="_blank" >10.1021/acs.jpca.1c03477</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Charge-Tagged Nucleosides in the Gas Phase: UV–Vis Action Spectroscopy and Structures of Cytidine Cations, Dications, and Cation Radicals
Popis výsledku v původním jazyce
Cytidine ribonucleosides were furnished at O5′ with fixed-charge 6-trimethylammoniumhexan-1-aminecarbonyl tags and studied by UV–vis photodissociation action spectroscopy in the gas phase to probe isolated nucleobase chromophores in their neutral, protonated, and hydrogen-adduct radical forms. The action spectrum of the doubly charged cytidine conjugate showed bands at 310 and 270 nm that were assigned to the N3- and O2-protonated cytosine tautomers formed by electrospray, respectively. In contrast, cytidine conjugates coordinated to dibenzo-18-crown-6-ether (DBCE) in a noncovalent complex were found to strongly favor protonation at N3, forming a single-ion tautomer. This allowed us to form cytidine N3–H radicals by electron transfer dissociation of the complex and study their action spectra. Cytidine radicals showed only very weak absorption in the visible region of the spectrum for dipole-disallowed transitions to the low (A and B) excited states. The main bands were observed at 360, 300, and 250 nm that were assigned with the help of theoretical vibronic spectra obtained by time-dependent density functional theory calculations of multiple (>300) radical vibrational configurations. Collision-induced dissociations of cytidine radicals proceeded by major cleavage of the N1–C1′ glycosidic bond leading to loss of cytosine and competitive loss of N3-hydrogen atom. These dissociations were characterized by calculations of transition-state structures and energies using combined Born–Oppenheimer molecular dynamics and DFT calculations. Overall, cytidine radicals were found to be kinetically and thermodynamically more stable than previously reported analogous adenosine and guanosine radicals.
Název v anglickém jazyce
Charge-Tagged Nucleosides in the Gas Phase: UV–Vis Action Spectroscopy and Structures of Cytidine Cations, Dications, and Cation Radicals
Popis výsledku anglicky
Cytidine ribonucleosides were furnished at O5′ with fixed-charge 6-trimethylammoniumhexan-1-aminecarbonyl tags and studied by UV–vis photodissociation action spectroscopy in the gas phase to probe isolated nucleobase chromophores in their neutral, protonated, and hydrogen-adduct radical forms. The action spectrum of the doubly charged cytidine conjugate showed bands at 310 and 270 nm that were assigned to the N3- and O2-protonated cytosine tautomers formed by electrospray, respectively. In contrast, cytidine conjugates coordinated to dibenzo-18-crown-6-ether (DBCE) in a noncovalent complex were found to strongly favor protonation at N3, forming a single-ion tautomer. This allowed us to form cytidine N3–H radicals by electron transfer dissociation of the complex and study their action spectra. Cytidine radicals showed only very weak absorption in the visible region of the spectrum for dipole-disallowed transitions to the low (A and B) excited states. The main bands were observed at 360, 300, and 250 nm that were assigned with the help of theoretical vibronic spectra obtained by time-dependent density functional theory calculations of multiple (>300) radical vibrational configurations. Collision-induced dissociations of cytidine radicals proceeded by major cleavage of the N1–C1′ glycosidic bond leading to loss of cytosine and competitive loss of N3-hydrogen atom. These dissociations were characterized by calculations of transition-state structures and energies using combined Born–Oppenheimer molecular dynamics and DFT calculations. Overall, cytidine radicals were found to be kinetically and thermodynamically more stable than previously reported analogous adenosine and guanosine radicals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19094" target="_blank" >LTAUSA19094: Přenos elektronu a protonu v ionizovaných fragmentech DNA</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
1520-5215
Svazek periodika
125
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
6096-6108
Kód UT WoS článku
000677580900007
EID výsledku v databázi Scopus
2-s2.0-85111297329