Spectroscopic and quantum chemical study on a non-linear optical material 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00547416" target="_blank" >RIV/61388963:_____/22:00547416 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.molstruc.2021.131540" target="_blank" >https://doi.org/10.1016/j.molstruc.2021.131540</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molstruc.2021.131540" target="_blank" >10.1016/j.molstruc.2021.131540</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectroscopic and quantum chemical study on a non-linear optical material 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate
Popis výsledku v původním jazyce
Chalcone derivatives are known for their characteristic non-linear optical efficiency. In the present work, the relation between the molecular structure and non-linear optical properties of a synthesized chalcone derivative 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate (4TPMS) have been investigated by combined experimental and theoretical approaches. The title compound 4TPMS was characterized by spectroscopic techniques viz. Raman, FT-IR, UV-vis, and 1H NMR. Further, the experimental findings were validated by quantum chemical computations. The crystalline geometry of 4TPMS was optimized to energy minima by employing density functional theory (DFT) with B3LYP/6-311++G(d,p) approximation level. Harmonic vibrational frequencies were calculated and the spectral assignments have been done by potential energy distribution (PED) analysis. Significant non-linear optical (NLO) responses of chalcone are mainly caused by charge delocalization between lone pair and antibonding molecular orbitals within the molecule. Hence, natural bond orbital (NBO) was performed to analyze the charge delocalization along with the stability of the molecule. The population analysis based on Charges from Electrostatic Potentials using a Grid based method (CHELPG) was employed to understand the electrophilic/nucleophilic reaction sites.nMoreover, the time-dependent density functional theory (TD-DFT) was employed to predict the energies, absorption wavelengths (λmax) and oscillator strengths (f) of the electronic transitions. The TD-DFT calculation successfully reproduces the experimental UV-Vis spectrum of 4TPMS. The chemical shifts observed in 1H-NMR and the calculated GIAO shielding tensors also showed good agreement. A vibrational contribution to the NLO activity and the effect of charge delocalization on the NLO response were illustrated by comparing the similar kind of chalcone derivatives.
Název v anglickém jazyce
Spectroscopic and quantum chemical study on a non-linear optical material 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate
Popis výsledku anglicky
Chalcone derivatives are known for their characteristic non-linear optical efficiency. In the present work, the relation between the molecular structure and non-linear optical properties of a synthesized chalcone derivative 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate (4TPMS) have been investigated by combined experimental and theoretical approaches. The title compound 4TPMS was characterized by spectroscopic techniques viz. Raman, FT-IR, UV-vis, and 1H NMR. Further, the experimental findings were validated by quantum chemical computations. The crystalline geometry of 4TPMS was optimized to energy minima by employing density functional theory (DFT) with B3LYP/6-311++G(d,p) approximation level. Harmonic vibrational frequencies were calculated and the spectral assignments have been done by potential energy distribution (PED) analysis. Significant non-linear optical (NLO) responses of chalcone are mainly caused by charge delocalization between lone pair and antibonding molecular orbitals within the molecule. Hence, natural bond orbital (NBO) was performed to analyze the charge delocalization along with the stability of the molecule. The population analysis based on Charges from Electrostatic Potentials using a Grid based method (CHELPG) was employed to understand the electrophilic/nucleophilic reaction sites.nMoreover, the time-dependent density functional theory (TD-DFT) was employed to predict the energies, absorption wavelengths (λmax) and oscillator strengths (f) of the electronic transitions. The TD-DFT calculation successfully reproduces the experimental UV-Vis spectrum of 4TPMS. The chemical shifts observed in 1H-NMR and the calculated GIAO shielding tensors also showed good agreement. A vibrational contribution to the NLO activity and the effect of charge delocalization on the NLO response were illustrated by comparing the similar kind of chalcone derivatives.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Structure
ISSN
0022-2860
e-ISSN
1872-8014
Svazek periodika
1248
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
131540
Kód UT WoS článku
000704356700007
EID výsledku v databázi Scopus
2-s2.0-85115893965