Classical Trajectory of Molecules in Electromagnetic Field: A Handy Method to Simulate Molecular Vibrational Spectra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00556415" target="_blank" >RIV/61388963:_____/22:00556415 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1021/acs.jctc.1c01138" target="_blank" >https://doi.org/10.1021/acs.jctc.1c01138</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.1c01138" target="_blank" >10.1021/acs.jctc.1c01138</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classical Trajectory of Molecules in Electromagnetic Field: A Handy Method to Simulate Molecular Vibrational Spectra
Popis výsledku v původním jazyce
Within harmonic approximations, molecular vibrational spectra are simulated in a standard way through force field diagonalization and following transformation of Cartesian to normal-mode tensor derivatives. This may become tedious for large systems of many thousands of atoms and also not necessary because of a limited resolution required to interpret an experiment. We developed an algorithm based on the real-time real-field molecular dynamics, effectively at zero temperature, invoked in a molecule by the electromagnetic field of light. The algorithm is simple to implement and suitable for parallel computing, and it can be potentially extended to more complicated molecular-light interaction modes. It circumvents the diagonalization and is suitable to model vibrational optical activity (vibrational circular dichroism and, to a lesser extent, Raman optical activity). For large molecules, it becomes faster than diagonalization, but it also enables the assignment of vibrational spectral bands to local molecular motions.
Název v anglickém jazyce
Classical Trajectory of Molecules in Electromagnetic Field: A Handy Method to Simulate Molecular Vibrational Spectra
Popis výsledku anglicky
Within harmonic approximations, molecular vibrational spectra are simulated in a standard way through force field diagonalization and following transformation of Cartesian to normal-mode tensor derivatives. This may become tedious for large systems of many thousands of atoms and also not necessary because of a limited resolution required to interpret an experiment. We developed an algorithm based on the real-time real-field molecular dynamics, effectively at zero temperature, invoked in a molecule by the electromagnetic field of light. The algorithm is simple to implement and suitable for parallel computing, and it can be potentially extended to more complicated molecular-light interaction modes. It circumvents the diagonalization and is suitable to model vibrational optical activity (vibrational circular dichroism and, to a lesser extent, Raman optical activity). For large molecules, it becomes faster than diagonalization, but it also enables the assignment of vibrational spectral bands to local molecular motions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
1549-9626
Svazek periodika
18
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1780-1787
Kód UT WoS článku
000812183600001
EID výsledku v databázi Scopus
2-s2.0-85124888149