Resolution of Identity in Gas-Phase Dissociations of Mono- and Diprotonated DNA Trinucleotide Codons by 15N-Labeling and Computational Structure Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00561449" target="_blank" >RIV/61388963:_____/22:00561449 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1021/jasms.2c00194" target="_blank" >https://doi.org/10.1021/jasms.2c00194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jasms.2c00194" target="_blank" >10.1021/jasms.2c00194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resolution of Identity in Gas-Phase Dissociations of Mono- and Diprotonated DNA Trinucleotide Codons by 15N-Labeling and Computational Structure Analysis
Popis výsledku v původním jazyce
Dissociations of DNA trinucleotide codons as gas-phase singly and doubly protonated ions were studied by tandem mass spectrometry using 15N-labeling to resolve identity in the nucleobase loss and backbone cleavages. The monocations showed different distributions of nucleobase loss from the 5′-, middle, and 3′-positions depending on the nucleobase, favoring cytosine over guanine, adenine, and thymine in an ensemble-averaged 62:27:11:<1 ratio. The distribution for the loss of the 5′-, middle, and 3′-nucleobase was 49:18:33, favoring the 5′-nucleobase, but also depending on its nature. The formation of sequence w2+ ions was unambiguously established for all codon mono- and dications. Structures of low-Gibbs-energy protomers and conformers of dAAA+, dGGG+, dCCC+, dTTT+, dACA+, and dATC+ were established by Born–Oppenheimer molecular dynamics and density functional theory calculations. Monocations containing guanine favored classical structures protonated at guanine N7. Structures containing adenine and cytosine produced classical nucleobase-protonated isomers as well as zwitterions in which two protonated bases were combined with a phosphate anion. Protonation at thymine was disfavored. Low threshold energies for nucleobase loss allowed extensive proton migration to occur prior to dissociation. Loss of the nucleobase from monocations was assisted by neighboring group participation in nucleophilic addition or proton abstraction, as well as allosteric proton migrations remote from the reaction center. The optimized structures of diprotonated isomers for dAAA2+ and dACA2+ revealed combinations of classical and zwitterionic structures. The threshold and transition-state energies for nucleobase-ion loss from dications were low, resulting in facile dissociations involving cytosine, guanine, and adenine.
Název v anglickém jazyce
Resolution of Identity in Gas-Phase Dissociations of Mono- and Diprotonated DNA Trinucleotide Codons by 15N-Labeling and Computational Structure Analysis
Popis výsledku anglicky
Dissociations of DNA trinucleotide codons as gas-phase singly and doubly protonated ions were studied by tandem mass spectrometry using 15N-labeling to resolve identity in the nucleobase loss and backbone cleavages. The monocations showed different distributions of nucleobase loss from the 5′-, middle, and 3′-positions depending on the nucleobase, favoring cytosine over guanine, adenine, and thymine in an ensemble-averaged 62:27:11:<1 ratio. The distribution for the loss of the 5′-, middle, and 3′-nucleobase was 49:18:33, favoring the 5′-nucleobase, but also depending on its nature. The formation of sequence w2+ ions was unambiguously established for all codon mono- and dications. Structures of low-Gibbs-energy protomers and conformers of dAAA+, dGGG+, dCCC+, dTTT+, dACA+, and dATC+ were established by Born–Oppenheimer molecular dynamics and density functional theory calculations. Monocations containing guanine favored classical structures protonated at guanine N7. Structures containing adenine and cytosine produced classical nucleobase-protonated isomers as well as zwitterions in which two protonated bases were combined with a phosphate anion. Protonation at thymine was disfavored. Low threshold energies for nucleobase loss allowed extensive proton migration to occur prior to dissociation. Loss of the nucleobase from monocations was assisted by neighboring group participation in nucleophilic addition or proton abstraction, as well as allosteric proton migrations remote from the reaction center. The optimized structures of diprotonated isomers for dAAA2+ and dACA2+ revealed combinations of classical and zwitterionic structures. The threshold and transition-state energies for nucleobase-ion loss from dications were low, resulting in facile dissociations involving cytosine, guanine, and adenine.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19094" target="_blank" >LTAUSA19094: Přenos elektronu a protonu v ionizovaných fragmentech DNA</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Society for Mass Spectrometry
ISSN
1044-0305
e-ISSN
1879-1123
Svazek periodika
33
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1936-1950
Kód UT WoS článku
000853746400001
EID výsledku v databázi Scopus
2-s2.0-85138019887