Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F23%3A00573682" target="_blank" >RIV/61388963:_____/23:00573682 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/23:73620079 RIV/61989100:27640/23:10252632 RIV/61989100:27740/23:10252632
Výsledek na webu
<a href="https://doi.org/10.1021/acs.jpcc.3c01821" target="_blank" >https://doi.org/10.1021/acs.jpcc.3c01821</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.3c01821" target="_blank" >10.1021/acs.jpcc.3c01821</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids
Popis výsledku v původním jazyce
Covalent hybrids of graphene and metal–organic frameworks (MOFs) hold immense potential in various technologies, particularly catalysis and energy applications, due to the advantageous combination of conductivity and porosity. The formation of an amide bond between carboxylate-functionalized graphene acid (GA) and amine-functionalized UiO-66-NH2 MOF (Zr6O4(OH)4(NH2-bdc)6, with NH2-bdc2– = 2-amino-1,4-benzenedicarboxylate and UiO = Universitetet i Oslo) is a highly efficient strategy for creating such covalent hybrids. Previous experimental studies have demonstrated exceptional properties of these conductive networks, including significant surface area and functionalized hierarchical pores, showing promise as a chemiresistive CO2 sensor and electrode materials for asymmetric supercapacitors. However, the molecular-level origin of the covalent linkages between pristine MOF and GA layers remains unclear. In this study, density functional theory (DFT) calculations were conducted to elucidate the mechanism of amide bond formation between GA and UiO-66-NH2. The theoretical calculations emphasize the crucial role of zirconium within UiO-66, which acts as a catalyst in the reaction cycle. Both commonly observed hexa-coordinated and less common hepta-coordinated zirconium complexes are considered as intermediates. By gaining detailed insights into the binding interactions between graphene derivatives and MOFs, strategies for tailored syntheses of such nanocomposite materials can be developed.
Název v anglickém jazyce
Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids
Popis výsledku anglicky
Covalent hybrids of graphene and metal–organic frameworks (MOFs) hold immense potential in various technologies, particularly catalysis and energy applications, due to the advantageous combination of conductivity and porosity. The formation of an amide bond between carboxylate-functionalized graphene acid (GA) and amine-functionalized UiO-66-NH2 MOF (Zr6O4(OH)4(NH2-bdc)6, with NH2-bdc2– = 2-amino-1,4-benzenedicarboxylate and UiO = Universitetet i Oslo) is a highly efficient strategy for creating such covalent hybrids. Previous experimental studies have demonstrated exceptional properties of these conductive networks, including significant surface area and functionalized hierarchical pores, showing promise as a chemiresistive CO2 sensor and electrode materials for asymmetric supercapacitors. However, the molecular-level origin of the covalent linkages between pristine MOF and GA layers remains unclear. In this study, density functional theory (DFT) calculations were conducted to elucidate the mechanism of amide bond formation between GA and UiO-66-NH2. The theoretical calculations emphasize the crucial role of zirconium within UiO-66, which acts as a catalyst in the reaction cycle. Both commonly observed hexa-coordinated and less common hepta-coordinated zirconium complexes are considered as intermediates. By gaining detailed insights into the binding interactions between graphene derivatives and MOFs, strategies for tailored syntheses of such nanocomposite materials can be developed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
127
Číslo periodika v rámci svazku
31
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
15454-15460
Kód UT WoS článku
001018960800001
EID výsledku v databázi Scopus
2-s2.0-85164822895