Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F23%3A00576127" target="_blank" >RIV/61388963:_____/23:00576127 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/23:00131808
Výsledek na webu
<a href="https://doi.org/10.1021/acs.jctc.3c00614" target="_blank" >https://doi.org/10.1021/acs.jctc.3c00614</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.3c00614" target="_blank" >10.1021/acs.jctc.3c00614</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints
Popis výsledku v původním jazyce
The routinely employed periodic boundary conditions complicate molecular simulations of physiologically relevant asymmetric lipid membranes together with their distinct solvent environments. Therefore, separating the extracellular fluid from its cytosolic counterpart has often been performed using a costly double-bilayer setup. Here, we demonstrate that the lipid membrane and solvent asymmetry can be efficiently modeled with a single lipid bilayer by applying an inverted flat-bottom potential to ions and other solute molecules, thereby restraining them to only interact with the relevant leaflet. We carefully optimized the parameters of the suggested method so that the results obtained using the flat-bottom and double-bilayer approaches become mutually indistinguishable. Then, we apply the flat-bottom approach to lipid bilayers with various compositions and solvent environments, covering ions and cationic peptides to validate the approach in a realistic use case. We also discuss the possible limitations of the method as well as its computational efficiency and provide a step-by-step guide on how to set up such simulations in a straightforward manner.
Název v anglickém jazyce
Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints
Popis výsledku anglicky
The routinely employed periodic boundary conditions complicate molecular simulations of physiologically relevant asymmetric lipid membranes together with their distinct solvent environments. Therefore, separating the extracellular fluid from its cytosolic counterpart has often been performed using a costly double-bilayer setup. Here, we demonstrate that the lipid membrane and solvent asymmetry can be efficiently modeled with a single lipid bilayer by applying an inverted flat-bottom potential to ions and other solute molecules, thereby restraining them to only interact with the relevant leaflet. We carefully optimized the parameters of the suggested method so that the results obtained using the flat-bottom and double-bilayer approaches become mutually indistinguishable. Then, we apply the flat-bottom approach to lipid bilayers with various compositions and solvent environments, covering ions and cationic peptides to validate the approach in a realistic use case. We also discuss the possible limitations of the method as well as its computational efficiency and provide a step-by-step guide on how to set up such simulations in a straightforward manner.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5103" target="_blank" >LX22NPO5103: Národní institut virologie a bakteriologie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
1549-9626
Svazek periodika
19
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
6332-6341
Kód UT WoS článku
001061517800001
EID výsledku v databázi Scopus
2-s2.0-85171789848