Functional Design of a Reconfigurable Molecular Nanomachine: A Promising Domain for Optically Propelled Molecular Motors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F23%3A00576467" target="_blank" >RIV/61388963:_____/23:00576467 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/23:73621703 RIV/61989100:27740/23:10253092
Výsledek na webu
<a href="https://doi.org/10.1021/acs.jpcc.3c02533" target="_blank" >https://doi.org/10.1021/acs.jpcc.3c02533</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.3c02533" target="_blank" >10.1021/acs.jpcc.3c02533</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Functional Design of a Reconfigurable Molecular Nanomachine: A Promising Domain for Optically Propelled Molecular Motors
Popis výsledku v původním jazyce
The utilization of light-driven functional molecules as components of nanoscale devices has the potential to contribute to advancements in electronic circuit shrinkage. By incorporating these molecules into molecular machinery, there are possibilities for achieving improved miniaturization and enhanced device performance. The second-generation 9H-fluorene-based system is a promising building block for the design and development of a full-scale molecular machine. The electronic-level modulations associated with rotational motion are investigated by using density functional theory (DFT). Following that, the magnetoelectric changes in the molecular system are mapped using a non-equilibrium Green's function (NEGF)-based transport study. The theoretical design of such conjugates can serve as a driving force in developing technology for remotely controlled nanoscale devices. The findings are critical for advancing organic opto-spintronics and account for the exceptional ability of light-active molecular motors to perform mechanical work at the molecular level.
Název v anglickém jazyce
Functional Design of a Reconfigurable Molecular Nanomachine: A Promising Domain for Optically Propelled Molecular Motors
Popis výsledku anglicky
The utilization of light-driven functional molecules as components of nanoscale devices has the potential to contribute to advancements in electronic circuit shrinkage. By incorporating these molecules into molecular machinery, there are possibilities for achieving improved miniaturization and enhanced device performance. The second-generation 9H-fluorene-based system is a promising building block for the design and development of a full-scale molecular machine. The electronic-level modulations associated with rotational motion are investigated by using density functional theory (DFT). Following that, the magnetoelectric changes in the molecular system are mapped using a non-equilibrium Green's function (NEGF)-based transport study. The theoretical design of such conjugates can serve as a driving force in developing technology for remotely controlled nanoscale devices. The findings are critical for advancing organic opto-spintronics and account for the exceptional ability of light-active molecular motors to perform mechanical work at the molecular level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27454X" target="_blank" >GX19-27454X: Ovlivnění elektronických vlastností organometalických molekul pomocí jejich nekovalentních interakcí s rozpouštědly, ligandy a 2D nanosystémy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
127
Číslo periodika v rámci svazku
37
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
18574-18585
Kód UT WoS článku
001065440600001
EID výsledku v databázi Scopus
2-s2.0-85172882791