Overlay databank unlocks data-driven analyses of biomolecules for all
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00583039" target="_blank" >RIV/61388963:_____/24:00583039 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s41467-024-45189-z" target="_blank" >https://doi.org/10.1038/s41467-024-45189-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-024-45189-z" target="_blank" >10.1038/s41467-024-45189-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overlay databank unlocks data-driven analyses of biomolecules for all
Popis výsledku v původním jazyce
Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.
Název v anglickém jazyce
Overlay databank unlocks data-driven analyses of biomolecules for all
Popis výsledku anglicky
Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Communications
ISSN
2041-1723
e-ISSN
2041-1723
Svazek periodika
15
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1136
Kód UT WoS článku
001159313700005
EID výsledku v databázi Scopus
2-s2.0-85184724502