Reproducible mass spectrometry data processing and compound annotation in MZmine 3
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00586544" target="_blank" >RIV/61388963:_____/24:00586544 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/24:10482661
Výsledek na webu
<a href="https://doi.org/10.1038/s41596-024-00996-y" target="_blank" >https://doi.org/10.1038/s41596-024-00996-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41596-024-00996-y" target="_blank" >10.1038/s41596-024-00996-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reproducible mass spectrometry data processing and compound annotation in MZmine 3
Popis výsledku v původním jazyce
Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.
Název v anglickém jazyce
Reproducible mass spectrometry data processing and compound annotation in MZmine 3
Popis výsledku anglicky
Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Protocols
ISSN
1754-2189
e-ISSN
1750-2799
Svazek periodika
19
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
2597-2641
Kód UT WoS článku
001228380000001
EID výsledku v databázi Scopus
2-s2.0-85193731416