The Hydrogen-Bond Continuum in the Salt/Cocrystal Systems of Quinoline and Chloro-Nitrobenzoic Acids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00597651" target="_blank" >RIV/61388963:_____/24:00597651 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10483725 RIV/60461373:22310/24:43930287
Výsledek na webu
<a href="https://doi.org/10.1002/chem.202402946" target="_blank" >https://doi.org/10.1002/chem.202402946</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/chem.202402946" target="_blank" >10.1002/chem.202402946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Hydrogen-Bond Continuum in the Salt/Cocrystal Systems of Quinoline and Chloro-Nitrobenzoic Acids
Popis výsledku v původním jazyce
This study investigates the hydrogen-bond geometry in six two-component solid systems composed of quinoline and chloro-nitrobenzoic acids. New X-ray diffraction studies were conducted using both the conventional independent-atom model and the more recent Hirshfeld atom-refinement method, with the latter providing precise hydrogen-atom positions. The systems can be divided into salts (the hydrogen atom transferred to the quinoline nitrogen), cocrystals (the hydrogen atom retained by the acid), and intermediate structures. Solid-state NMR experiments corroborated the X-ray diffraction-derived H-N distances. DFT calculations, using five functionals including hybrid B3LYP and PBE0, showed varying energy profiles for the hydrogen bonds, with notable differences across functionals. These calculations revealed different preferences for salt or cocrystal structures, depending on the functional used. Path-integral molecular dynamics simulations incorporating nuclear quantum effects demonstrated significant hydrogen-atom delocalization, forming a hydrogen-bond continuum, and provided average N-H distances in excellent agreement with experimental results. This comprehensive experimental and theoretical approach highlights the complexity of multicomponent solids. The study emphasizes that the classification into salts or cocrystals is frequently inadequate, as the hydrogen atom is often significantly delocalized in the hydrogen bond. This insight is crucial for understanding and predicting the behavior of such systems in pharmaceutical applications.
Název v anglickém jazyce
The Hydrogen-Bond Continuum in the Salt/Cocrystal Systems of Quinoline and Chloro-Nitrobenzoic Acids
Popis výsledku anglicky
This study investigates the hydrogen-bond geometry in six two-component solid systems composed of quinoline and chloro-nitrobenzoic acids. New X-ray diffraction studies were conducted using both the conventional independent-atom model and the more recent Hirshfeld atom-refinement method, with the latter providing precise hydrogen-atom positions. The systems can be divided into salts (the hydrogen atom transferred to the quinoline nitrogen), cocrystals (the hydrogen atom retained by the acid), and intermediate structures. Solid-state NMR experiments corroborated the X-ray diffraction-derived H-N distances. DFT calculations, using five functionals including hybrid B3LYP and PBE0, showed varying energy profiles for the hydrogen bonds, with notable differences across functionals. These calculations revealed different preferences for salt or cocrystal structures, depending on the functional used. Path-integral molecular dynamics simulations incorporating nuclear quantum effects demonstrated significant hydrogen-atom delocalization, forming a hydrogen-bond continuum, and provided average N-H distances in excellent agreement with experimental results. This comprehensive experimental and theoretical approach highlights the complexity of multicomponent solids. The study emphasizes that the classification into salts or cocrystals is frequently inadequate, as the hydrogen atom is often significantly delocalized in the hydrogen bond. This insight is crucial for understanding and predicting the behavior of such systems in pharmaceutical applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-15374S" target="_blank" >GA22-15374S: Reakce s přenosem protonu studované pomocí NMR spektroskopie a pokročilých kvantově chemických výpočtů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemistry - A European Journal
ISSN
0947-6539
e-ISSN
1521-3765
Svazek periodika
30
Číslo periodika v rámci svazku
68
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
e202402946
Kód UT WoS článku
001332307100001
EID výsledku v databázi Scopus
2-s2.0-85206579246