Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F18%3A00498742" target="_blank" >RIV/61388971:_____/18:00498742 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3897/mycokeys.39.28109" target="_blank" >http://dx.doi.org/10.3897/mycokeys.39.28109</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3897/mycokeys.39.28109" target="_blank" >10.3897/mycokeys.39.28109</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding
Popis výsledku v původním jazyce
Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.
Název v anglickém jazyce
Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding
Popis výsledku anglicky
Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MycoKeys
ISSN
1314-4057
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
SEP 10
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
12
Strana od-do
29-40
Kód UT WoS článku
000444106400001
EID výsledku v databázi Scopus
2-s2.0-85054060226