When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F19%3A00510025" target="_blank" >RIV/61388971:_____/19:00510025 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0048969719302839?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969719302839?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2019.01.233" target="_blank" >10.1016/j.scitotenv.2019.01.233</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem
Popis výsledku v původním jazyce
The growth and survival of plants in semiarid Mediterranean forests can be improved through the benefits conferred by thinning, a forest management practice that removes trees and reduces the competition between the remaining ones. Here, we evaluate the impacts of induced drought (the exclusion of 25% of the natural rainfall for 5 years) and thinning, and their interaclion, with the objective of determining whether the thinning of Holm oak (Quercus ilex L) modulates the resistance of the soil microbial community to drought. Sequencing of 16S rRNA and ITS amplicons revealed that drought, thinning, and their interaction influenced the composition of the bacterial community, while the fungal community was exclusively affected by thinning. Thinning consisted of the removal of the aboveground parts of the Holm oak trees, which were thereafter left in forest stand. Thinning contributed to the C and N contents, with parallel increases in microbial biomass, particularly in summer. Drought increased the amounts of total organic C and total N, likely due to the reduced enzyme activities. Indeed, the composition of the bacterial community was modulated primarily by the indirect and long-term effects of drought - the accumulation of soil organic matter- rather than by the direct effect of the lower water content imposed by the drought treatments. Thinning under drought conditions did not increase soil organic C (SOC) content. However, the resistance of the soil microbial community to drought was fostered by thinning, particularly at the functional level, as indicated by the enzyme activities related to C, N and P cycles. These responses were associated to variations in the composition of the microbial communities in thinned, drought-exposed plots, in comparison to unthinned, drought-exposed plots. In conclusion, the interaction between forest management and drought influenced the soil microbial community of a Holm oak-dominated Mediterranean ecosystem.
Název v anglickém jazyce
When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem
Popis výsledku anglicky
The growth and survival of plants in semiarid Mediterranean forests can be improved through the benefits conferred by thinning, a forest management practice that removes trees and reduces the competition between the remaining ones. Here, we evaluate the impacts of induced drought (the exclusion of 25% of the natural rainfall for 5 years) and thinning, and their interaclion, with the objective of determining whether the thinning of Holm oak (Quercus ilex L) modulates the resistance of the soil microbial community to drought. Sequencing of 16S rRNA and ITS amplicons revealed that drought, thinning, and their interaction influenced the composition of the bacterial community, while the fungal community was exclusively affected by thinning. Thinning consisted of the removal of the aboveground parts of the Holm oak trees, which were thereafter left in forest stand. Thinning contributed to the C and N contents, with parallel increases in microbial biomass, particularly in summer. Drought increased the amounts of total organic C and total N, likely due to the reduced enzyme activities. Indeed, the composition of the bacterial community was modulated primarily by the indirect and long-term effects of drought - the accumulation of soil organic matter- rather than by the direct effect of the lower water content imposed by the drought treatments. Thinning under drought conditions did not increase soil organic C (SOC) content. However, the resistance of the soil microbial community to drought was fostered by thinning, particularly at the functional level, as indicated by the enzyme activities related to C, N and P cycles. These responses were associated to variations in the composition of the microbial communities in thinned, drought-exposed plots, in comparison to unthinned, drought-exposed plots. In conclusion, the interaction between forest management and drought influenced the soil microbial community of a Holm oak-dominated Mediterranean ecosystem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the Total Environment
ISSN
0048-9697
e-ISSN
—
Svazek periodika
662
Číslo periodika v rámci svazku
APR 20
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
276-286
Kód UT WoS článku
000459163900029
EID výsledku v databázi Scopus
2-s2.0-85060470819