Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F19%3A00510165" target="_blank" >RIV/61388971:_____/19:00510165 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0038071719301506?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071719301506?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.soilbio.2019.05.016" target="_blank" >10.1016/j.soilbio.2019.05.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass
Popis výsledku v původním jazyce
The ongoing increase of atmospheric temperature may induce soil organic carbon (SOC) loss and exacerbate the greenhouse effect. As a result, there is a great effort to understand the relationship between temperature and the heterotrophic soil respiration rate (R-SOIL) as it has significant implications for anticipated change of the Earth system. Soil respiration depends on the size of respiring microbial biomass (MBC) and when R-SOIL is measured without concurrent measurement of MBC, the apparent temperature sensitivity of R-SOIL could be misinterpreted since MBC can change with temperature within days or weeks of warming. The effect of temperature driven changes in MBC on the apparent temperature sensitivity of R-SOIL was evaluated using a meta-analysis of 27 laboratory and field experiments conducted at different temporal scales (1-730 d) and under a wide range of temperatures (2-50 degrees C) and soil conditions. Across all studies, the apparent temperature sensitivity decreased when MBC decreased with increasing temperature and vice versa. We observed a steep decrease of MBC above optimal temperature (27.1 +/- 1.0 degrees C), which attenuated the apparent temperature sensitivity of R-SOIL, an aspect previously explained by the existence of reaction rate temperature optima. The temperature response of the MBC specific respiration rate was, however, highly non-linear and soil specific. Including MBC in soil biogeochemical models requires careful consideration of the variability of temperature-associated physiological changes of soil microorganisms. Without it, microbially explicit models cannot predict temperature induced SOC loss better than older, empirical models based on first order reaction kinetics.
Název v anglickém jazyce
Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass
Popis výsledku anglicky
The ongoing increase of atmospheric temperature may induce soil organic carbon (SOC) loss and exacerbate the greenhouse effect. As a result, there is a great effort to understand the relationship between temperature and the heterotrophic soil respiration rate (R-SOIL) as it has significant implications for anticipated change of the Earth system. Soil respiration depends on the size of respiring microbial biomass (MBC) and when R-SOIL is measured without concurrent measurement of MBC, the apparent temperature sensitivity of R-SOIL could be misinterpreted since MBC can change with temperature within days or weeks of warming. The effect of temperature driven changes in MBC on the apparent temperature sensitivity of R-SOIL was evaluated using a meta-analysis of 27 laboratory and field experiments conducted at different temporal scales (1-730 d) and under a wide range of temperatures (2-50 degrees C) and soil conditions. Across all studies, the apparent temperature sensitivity decreased when MBC decreased with increasing temperature and vice versa. We observed a steep decrease of MBC above optimal temperature (27.1 +/- 1.0 degrees C), which attenuated the apparent temperature sensitivity of R-SOIL, an aspect previously explained by the existence of reaction rate temperature optima. The temperature response of the MBC specific respiration rate was, however, highly non-linear and soil specific. Including MBC in soil biogeochemical models requires careful consideration of the variability of temperature-associated physiological changes of soil microorganisms. Without it, microbially explicit models cannot predict temperature induced SOC loss better than older, empirical models based on first order reaction kinetics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-25706S" target="_blank" >GA18-25706S: Společenstva bakterií, účastnící se biogeochemických procesů v lesních půdách: od kořenů po opad</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soil Biology and Biochemistry
ISSN
0038-0717
e-ISSN
—
Svazek periodika
135
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
286-293
Kód UT WoS článku
000477689700034
EID výsledku v databázi Scopus
2-s2.0-85065911032