Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F19%3A00510165" target="_blank" >RIV/61388971:_____/19:00510165 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0038071719301506?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071719301506?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.soilbio.2019.05.016" target="_blank" >10.1016/j.soilbio.2019.05.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass

  • Popis výsledku v původním jazyce

    The ongoing increase of atmospheric temperature may induce soil organic carbon (SOC) loss and exacerbate the greenhouse effect. As a result, there is a great effort to understand the relationship between temperature and the heterotrophic soil respiration rate (R-SOIL) as it has significant implications for anticipated change of the Earth system. Soil respiration depends on the size of respiring microbial biomass (MBC) and when R-SOIL is measured without concurrent measurement of MBC, the apparent temperature sensitivity of R-SOIL could be misinterpreted since MBC can change with temperature within days or weeks of warming. The effect of temperature driven changes in MBC on the apparent temperature sensitivity of R-SOIL was evaluated using a meta-analysis of 27 laboratory and field experiments conducted at different temporal scales (1-730 d) and under a wide range of temperatures (2-50 degrees C) and soil conditions. Across all studies, the apparent temperature sensitivity decreased when MBC decreased with increasing temperature and vice versa. We observed a steep decrease of MBC above optimal temperature (27.1 +/- 1.0 degrees C), which attenuated the apparent temperature sensitivity of R-SOIL, an aspect previously explained by the existence of reaction rate temperature optima. The temperature response of the MBC specific respiration rate was, however, highly non-linear and soil specific. Including MBC in soil biogeochemical models requires careful consideration of the variability of temperature-associated physiological changes of soil microorganisms. Without it, microbially explicit models cannot predict temperature induced SOC loss better than older, empirical models based on first order reaction kinetics.

  • Název v anglickém jazyce

    Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass

  • Popis výsledku anglicky

    The ongoing increase of atmospheric temperature may induce soil organic carbon (SOC) loss and exacerbate the greenhouse effect. As a result, there is a great effort to understand the relationship between temperature and the heterotrophic soil respiration rate (R-SOIL) as it has significant implications for anticipated change of the Earth system. Soil respiration depends on the size of respiring microbial biomass (MBC) and when R-SOIL is measured without concurrent measurement of MBC, the apparent temperature sensitivity of R-SOIL could be misinterpreted since MBC can change with temperature within days or weeks of warming. The effect of temperature driven changes in MBC on the apparent temperature sensitivity of R-SOIL was evaluated using a meta-analysis of 27 laboratory and field experiments conducted at different temporal scales (1-730 d) and under a wide range of temperatures (2-50 degrees C) and soil conditions. Across all studies, the apparent temperature sensitivity decreased when MBC decreased with increasing temperature and vice versa. We observed a steep decrease of MBC above optimal temperature (27.1 +/- 1.0 degrees C), which attenuated the apparent temperature sensitivity of R-SOIL, an aspect previously explained by the existence of reaction rate temperature optima. The temperature response of the MBC specific respiration rate was, however, highly non-linear and soil specific. Including MBC in soil biogeochemical models requires careful consideration of the variability of temperature-associated physiological changes of soil microorganisms. Without it, microbially explicit models cannot predict temperature induced SOC loss better than older, empirical models based on first order reaction kinetics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10606 - Microbiology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-25706S" target="_blank" >GA18-25706S: Společenstva bakterií, účastnící se biogeochemických procesů v lesních půdách: od kořenů po opad</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soil Biology and Biochemistry

  • ISSN

    0038-0717

  • e-ISSN

  • Svazek periodika

    135

  • Číslo periodika v rámci svazku

    AUG

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    286-293

  • Kód UT WoS článku

    000477689700034

  • EID výsledku v databázi Scopus

    2-s2.0-85065911032