Different Reaction Specificities of F420H2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F20%3A00539841" target="_blank" >RIV/61388971:_____/20:00539841 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/20:10409880
Výsledek na webu
<a href="https://pubs.acs.org/doi/abs/10.1021/jacs.9b11234" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/jacs.9b11234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jacs.9b11234" target="_blank" >10.1021/jacs.9b11234</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Different Reaction Specificities of F420H2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets
Popis výsledku v původním jazyce
Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of L-tyrosine- or L-leucine-derived 4-alkyl-L-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Delta 1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated L-proline-like precursors and likely in the microbial central metabolism.
Název v anglickém jazyce
Different Reaction Specificities of F420H2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets
Popis výsledku anglicky
Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of L-tyrosine- or L-leucine-derived 4-alkyl-L-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Delta 1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated L-proline-like precursors and likely in the microbial central metabolism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Chemical Society
ISSN
0002-7863
e-ISSN
—
Svazek periodika
142
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
3440-3448
Kód UT WoS článku
000515214000026
EID výsledku v databázi Scopus
2-s2.0-85080122663