Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F21%3A00543397" target="_blank" >RIV/61388971:_____/21:00543397 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0308814621007639?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0308814621007639?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.foodchem.2021.129757" target="_blank" >10.1016/j.foodchem.2021.129757</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds
Popis výsledku v původním jazyce
Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to & nbsp.predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29 & ndash,103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03 & ndash,0.76 min and interval width of 0.33 & ndash,8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet & rsquo, s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
Název v anglickém jazyce
Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds
Popis výsledku anglicky
Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to & nbsp.predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29 & ndash,103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03 & ndash,0.76 min and interval width of 0.33 & ndash,8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet & rsquo, s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-00043S" target="_blank" >GA19-00043S: Aryl-sulfotrasferasy a jejich využití v přípravě sulfatovaných metabolitů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Food Chemistry
ISSN
0308-8146
e-ISSN
1873-7072
Svazek periodika
357
Číslo periodika v rámci svazku
SEP 30 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
129757
Kód UT WoS článku
000655533400011
EID výsledku v databázi Scopus
2-s2.0-85104344822