Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00560516" target="_blank" >RIV/61388971:_____/22:00560516 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/22:10465586
Výsledek na webu
<a href="https://www.bmj.com/content/378/bmj-2021-069881" target="_blank" >https://www.bmj.com/content/378/bmj-2021-069881</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1136/bmj-2021-069881" target="_blank" >10.1136/bmj-2021-069881</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
Popis výsledku v původním jazyce
OBJECTIVEnTo externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.nDESIGNnTwo stage individual participant data meta-analysis.nSETTINGnSecondary and tertiary care.nPARTICIPANTSn46 914 patients across 18 countries, admitted to a hospital. with polymerase chain reaction confirmed covid-19. nMODEL SELECTION AND ELIGIBILITY CRITERIAnPrognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.nMETHODSnEight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. Main outcome measures 30 day mortality or in-hospital mortality.nRESULTSnDatasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28).n
Název v anglickém jazyce
Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
Popis výsledku anglicky
OBJECTIVEnTo externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.nDESIGNnTwo stage individual participant data meta-analysis.nSETTINGnSecondary and tertiary care.nPARTICIPANTSn46 914 patients across 18 countries, admitted to a hospital. with polymerase chain reaction confirmed covid-19. nMODEL SELECTION AND ELIGIBILITY CRITERIAnPrognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.nMETHODSnEight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. Main outcome measures 30 day mortality or in-hospital mortality.nRESULTSnDatasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28).n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30303 - Infectious Diseases
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018131" target="_blank" >LM2018131: Česká národní infrastruktura pro biologická data</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
British Medical Journal
ISSN
0959-535X
e-ISSN
—
Svazek periodika
378
Číslo periodika v rámci svazku
JUL 12 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
e069881
Kód UT WoS článku
000839395300002
EID výsledku v databázi Scopus
2-s2.0-85133913942