Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00560516" target="_blank" >RIV/61388971:_____/22:00560516 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11130/22:10465586

  • Výsledek na webu

    <a href="https://www.bmj.com/content/378/bmj-2021-069881" target="_blank" >https://www.bmj.com/content/378/bmj-2021-069881</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1136/bmj-2021-069881" target="_blank" >10.1136/bmj-2021-069881</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

  • Popis výsledku v původním jazyce

    OBJECTIVEnTo externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.nDESIGNnTwo stage individual participant data meta-analysis.nSETTINGnSecondary and tertiary care.nPARTICIPANTSn46 914 patients across 18 countries, admitted to a hospital. with polymerase chain reaction confirmed covid-19. nMODEL SELECTION AND ELIGIBILITY CRITERIAnPrognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.nMETHODSnEight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. Main outcome measures 30 day mortality or in-hospital mortality.nRESULTSnDatasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28).n

  • Název v anglickém jazyce

    Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

  • Popis výsledku anglicky

    OBJECTIVEnTo externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.nDESIGNnTwo stage individual participant data meta-analysis.nSETTINGnSecondary and tertiary care.nPARTICIPANTSn46 914 patients across 18 countries, admitted to a hospital. with polymerase chain reaction confirmed covid-19. nMODEL SELECTION AND ELIGIBILITY CRITERIAnPrognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.nMETHODSnEight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. Main outcome measures 30 day mortality or in-hospital mortality.nRESULTSnDatasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28).n

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30303 - Infectious Diseases

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018131" target="_blank" >LM2018131: Česká národní infrastruktura pro biologická data</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    British Medical Journal

  • ISSN

    0959-535X

  • e-ISSN

  • Svazek periodika

    378

  • Číslo periodika v rámci svazku

    JUL 12 2022

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    e069881

  • Kód UT WoS článku

    000839395300002

  • EID výsledku v databázi Scopus

    2-s2.0-85133913942