Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00562728" target="_blank" >RIV/61388971:_____/22:00562728 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0038071722002838?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071722002838?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.soilbio.2022.108826" target="_blank" >10.1016/j.soilbio.2022.108826</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining
Popis výsledku v původním jazyce
Phosphorus (P) is an essential and limiting nutrient in soil and is tightly linked to soil fertility and productivity. Microorganisms have developed different mechanisms to respond to P scarcity and increase its availability in soil, which are susceptible to change under contrasting land uses. Here, we calculated and compared meta-genomic redundancy, as a measurement of ecosystem potential capacity, of 23 key functional genes related to organic P mineralization, inorganic P solubilization and P-starvation response regulation in forest, grassland and cropland soils through mining in public sequence repository. The redundancy of those genes in all currently published genomes (genome redundancy) from archaea, bacteria and fungi was also studied. Microbes in croplands and grasslands showed a higher potential (i.e., redundancy) to mineralize organic P through the action of alkaline phosphatases (phoA, phoD and phoX genes) and to solubilize inorganic P (gcd and pqqC) by producing gluconic acid than those in forests. Instead, the capacity of microbes to mineralize phosphonates through the action of C-P lyases (phnG, phnH, ..., phnM) was found to be higher in forests. The impact of land use on the metagenomic redundancy of genes encoding phytases (appA and 3-phytase) was dependent on the type of phytase. Intermetagenome redundancy (potentiality per metagenome unit) reached maximum values for phos-phatase production, P solubilization and regulation of P starvation, denoting the crucial role that these functions have in P cycling. Proteobacteria, within Bacteria, and Euryarchaeota, within Archaea, showed the greatest genomic potential to respond to P scarcity. However, the role of fungi seems to be more restricted. The present study provides an overview on how the microbial mechanisms that regulate P availability in soil potentially change with land use and taxonomy of microbes.
Název v anglickém jazyce
Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining
Popis výsledku anglicky
Phosphorus (P) is an essential and limiting nutrient in soil and is tightly linked to soil fertility and productivity. Microorganisms have developed different mechanisms to respond to P scarcity and increase its availability in soil, which are susceptible to change under contrasting land uses. Here, we calculated and compared meta-genomic redundancy, as a measurement of ecosystem potential capacity, of 23 key functional genes related to organic P mineralization, inorganic P solubilization and P-starvation response regulation in forest, grassland and cropland soils through mining in public sequence repository. The redundancy of those genes in all currently published genomes (genome redundancy) from archaea, bacteria and fungi was also studied. Microbes in croplands and grasslands showed a higher potential (i.e., redundancy) to mineralize organic P through the action of alkaline phosphatases (phoA, phoD and phoX genes) and to solubilize inorganic P (gcd and pqqC) by producing gluconic acid than those in forests. Instead, the capacity of microbes to mineralize phosphonates through the action of C-P lyases (phnG, phnH, ..., phnM) was found to be higher in forests. The impact of land use on the metagenomic redundancy of genes encoding phytases (appA and 3-phytase) was dependent on the type of phytase. Intermetagenome redundancy (potentiality per metagenome unit) reached maximum values for phos-phatase production, P solubilization and regulation of P starvation, denoting the crucial role that these functions have in P cycling. Proteobacteria, within Bacteria, and Euryarchaeota, within Archaea, showed the greatest genomic potential to respond to P scarcity. However, the role of fungi seems to be more restricted. The present study provides an overview on how the microbial mechanisms that regulate P availability in soil potentially change with land use and taxonomy of microbes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soil Biology and Biochemistry
ISSN
0038-0717
e-ISSN
—
Svazek periodika
174
Číslo periodika v rámci svazku
November 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
108826
Kód UT WoS článku
000861293800001
EID výsledku v databázi Scopus
2-s2.0-85137734404