Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

System dynamic modelling to assess the influential factors affecting roughing filter and slow sand filter performance in treating culinary wastewater

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00578270" target="_blank" >RIV/61388971:_____/23:00578270 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2214714423007948?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214714423007948?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jwpe.2023.104274" target="_blank" >10.1016/j.jwpe.2023.104274</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    System dynamic modelling to assess the influential factors affecting roughing filter and slow sand filter performance in treating culinary wastewater

  • Popis výsledku v původním jazyce

    This research aimed to determine the factors that influence the performance of a slow sand filter (SSF) equipped with a roughing filter (RF) as a pretreatment unit using system dynamic (SD) modelling. STELLA was used to model the system and predict the behavior pattern, as well as the system's performance in removing turbidity, total suspended solids (TSS), BOD, COD, and phosphate. SD modelling consisted of system identification, system model framework, model structure building, system modelling, verification, and validation. Two sub-models were obtained from the main model, consisting of the RF and SSF sub-models. Results showed that dissolved oxygen (DO) and the growth rate of microorganisms played significant roles in the parameter removal. Predicted result by SD modelling showed a good fit with actual run, suggesting that factors applied in the model building were adequate to exhibit the actual system. RF removed 80.5 %-85 % of turbidity and 70.63 %-85 % of TSS, while SSF removed 48.50 %-82.43 % of turbidity, 0.92 %-46.15 % of TSS, 1.65 %-65.45 % of BOD, 22.69 %- 65.22 % of COD, and 7.96 %-27.11 % of phosphate. Effluent after SSF was still having BOD and COD concentrations exceeding the governmental standard, in which increasing DO inlet and microorganism growth rate were simulated afterward. The scenarios used showed a positive impact on the removal of BOD and COD, resulting in an average concentration lower than the permissible limit (5 mg/L and 50 mg/L, respectively).

  • Název v anglickém jazyce

    System dynamic modelling to assess the influential factors affecting roughing filter and slow sand filter performance in treating culinary wastewater

  • Popis výsledku anglicky

    This research aimed to determine the factors that influence the performance of a slow sand filter (SSF) equipped with a roughing filter (RF) as a pretreatment unit using system dynamic (SD) modelling. STELLA was used to model the system and predict the behavior pattern, as well as the system's performance in removing turbidity, total suspended solids (TSS), BOD, COD, and phosphate. SD modelling consisted of system identification, system model framework, model structure building, system modelling, verification, and validation. Two sub-models were obtained from the main model, consisting of the RF and SSF sub-models. Results showed that dissolved oxygen (DO) and the growth rate of microorganisms played significant roles in the parameter removal. Predicted result by SD modelling showed a good fit with actual run, suggesting that factors applied in the model building were adequate to exhibit the actual system. RF removed 80.5 %-85 % of turbidity and 70.63 %-85 % of TSS, while SSF removed 48.50 %-82.43 % of turbidity, 0.92 %-46.15 % of TSS, 1.65 %-65.45 % of BOD, 22.69 %- 65.22 % of COD, and 7.96 %-27.11 % of phosphate. Effluent after SSF was still having BOD and COD concentrations exceeding the governmental standard, in which increasing DO inlet and microorganism growth rate were simulated afterward. The scenarios used showed a positive impact on the removal of BOD and COD, resulting in an average concentration lower than the permissible limit (5 mg/L and 50 mg/L, respectively).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Water Process Engineering

  • ISSN

    2214-7144

  • e-ISSN

    2214-7144

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    December 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    104274

  • Kód UT WoS článku

    001082531100001

  • EID výsledku v databázi Scopus

    2-s2.0-85171484411