Photochemical and Collision-Induced Cross-Linking in Stereochemically Distinct Scaffolds of Peptides and Nitrile Imines in Gas-Phase Ions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F24%3A00602576" target="_blank" >RIV/61388971:_____/24:00602576 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/24:73627600
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/jasms.4c00317" target="_blank" >https://pubs.acs.org/doi/10.1021/jasms.4c00317</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jasms.4c00317" target="_blank" >10.1021/jasms.4c00317</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photochemical and Collision-Induced Cross-Linking in Stereochemically Distinct Scaffolds of Peptides and Nitrile Imines in Gas-Phase Ions
Popis výsledku v původním jazyce
Intramolecular cross-linking between peptides and nitrile-imine intermediates was studied in stereochemically distinct conjugates in which the reacting components were mounted on cis-1,2-cyclohexane and trans-1,4-cyclohexane scaffolds that we call 1,2-s-peptides and 1,4-s-peptides, respectively. The nitrile-imine intermediates were generated by N2 loss from 2,5-diaryltetrazole tags upon UV-photodissociation at 213 and 250 nm or by collision-induced dissociation, and further interrogated by CID and UVPD-MS3. Peptide fragment ion series originating from linear structures and macrocyclic cross-links were distinguished and used to quantify the cross-linking yields. The yields in MS2 varied between 27% for AAAG conjugates to 78% for GAAAK conjugates, depending on the peptide sequence. The CID-MS3 yields were in a 57-97% range, depending on the peptide sequence. Structures of 1,2-s-peptide and 1,4-s-peptide ions as well as several of their nitrile-imine intermediates and cross-links were investigated by high-resolution cyclic ion mobility in combination with Born-Oppenheimer molecular dynamics and density functional theory calculations. Matches between the experimental and calculated collision cross sections and ion relative Gibbs energies were used to assign peptide structures. Peptide conjugates C-terminated with Gly and Lys residues underwent cross-linking by the carboxyl group, as established by MS3 sequencing and corroborated by carboxyl blocking experiments that lowered the cross-linking yields. Peptide conjugates C-terminated with Arg also cross-linked via the side-chain guanidine group. A notable feature of the 1,4-s-peptide ions was the participation of low-energy twist-boat cyclohexane conformers that was enforced by strong hydrogen bonds between the peptide and nitrile imine.
Název v anglickém jazyce
Photochemical and Collision-Induced Cross-Linking in Stereochemically Distinct Scaffolds of Peptides and Nitrile Imines in Gas-Phase Ions
Popis výsledku anglicky
Intramolecular cross-linking between peptides and nitrile-imine intermediates was studied in stereochemically distinct conjugates in which the reacting components were mounted on cis-1,2-cyclohexane and trans-1,4-cyclohexane scaffolds that we call 1,2-s-peptides and 1,4-s-peptides, respectively. The nitrile-imine intermediates were generated by N2 loss from 2,5-diaryltetrazole tags upon UV-photodissociation at 213 and 250 nm or by collision-induced dissociation, and further interrogated by CID and UVPD-MS3. Peptide fragment ion series originating from linear structures and macrocyclic cross-links were distinguished and used to quantify the cross-linking yields. The yields in MS2 varied between 27% for AAAG conjugates to 78% for GAAAK conjugates, depending on the peptide sequence. The CID-MS3 yields were in a 57-97% range, depending on the peptide sequence. Structures of 1,2-s-peptide and 1,4-s-peptide ions as well as several of their nitrile-imine intermediates and cross-links were investigated by high-resolution cyclic ion mobility in combination with Born-Oppenheimer molecular dynamics and density functional theory calculations. Matches between the experimental and calculated collision cross sections and ion relative Gibbs energies were used to assign peptide structures. Peptide conjugates C-terminated with Gly and Lys residues underwent cross-linking by the carboxyl group, as established by MS3 sequencing and corroborated by carboxyl blocking experiments that lowered the cross-linking yields. Peptide conjugates C-terminated with Arg also cross-linked via the side-chain guanidine group. A notable feature of the 1,4-s-peptide ions was the participation of low-energy twist-boat cyclohexane conformers that was enforced by strong hydrogen bonds between the peptide and nitrile imine.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Society for Mass Spectrometry
ISSN
1044-0305
e-ISSN
1879-1123
Svazek periodika
35
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
3070-3088
Kód UT WoS článku
001340747800001
EID výsledku v databázi Scopus
2-s2.0-85207300651