Preparation of High-Entropy (Ti, Zr, Hf, Ta, Nb) Carbide Powder via Solution Chemistry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F21%3A00543335" target="_blank" >RIV/61388980:_____/21:00543335 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/21:00543335 RIV/61389021:_____/21:00543335 RIV/00216208:11310/21:10429229
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00776" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00776</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.inorgchem.1c00776" target="_blank" >10.1021/acs.inorgchem.1c00776</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preparation of High-Entropy (Ti, Zr, Hf, Ta, Nb) Carbide Powder via Solution Chemistry
Popis výsledku v původním jazyce
High-entropy ceramics is a new class of materials having a great potential and wide application. The carbide of Ti, Zr, Hf, Ta, Nb is a typical member of this group. It has been synthesized mostly through blending, milling, and high-temperature solid-state reaction of metal carbide precursors for each metal. This route needs extremely high temperature (2300 °C), which makes it energy and technology demanding. We have developed a chemical route for high-entropy carbide powder that needs a synthetic temperature that is several hundred degrees Celsius lower. A solution of desired metal citrates with an excess of citric acid was converted into a metal oxide/active carbon nanocomposite. Starting from a solution enabled ideal mixing of precursors on a molecular level, allowing us to skip any milling and blending steps. The nanocomposite was treated in vacuum at 1600 °C, giving a phase-pure high-entropy carbide. The intermediate compounds and products were characterized by means of solid-state analysis.
Název v anglickém jazyce
Preparation of High-Entropy (Ti, Zr, Hf, Ta, Nb) Carbide Powder via Solution Chemistry
Popis výsledku anglicky
High-entropy ceramics is a new class of materials having a great potential and wide application. The carbide of Ti, Zr, Hf, Ta, Nb is a typical member of this group. It has been synthesized mostly through blending, milling, and high-temperature solid-state reaction of metal carbide precursors for each metal. This route needs extremely high temperature (2300 °C), which makes it energy and technology demanding. We have developed a chemical route for high-entropy carbide powder that needs a synthetic temperature that is several hundred degrees Celsius lower. A solution of desired metal citrates with an excess of citric acid was converted into a metal oxide/active carbon nanocomposite. Starting from a solution enabled ideal mixing of precursors on a molecular level, allowing us to skip any milling and blending steps. The nanocomposite was treated in vacuum at 1600 °C, giving a phase-pure high-entropy carbide. The intermediate compounds and products were characterized by means of solid-state analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018124" target="_blank" >LM2018124: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Inorganic Chemistry
ISSN
0020-1669
e-ISSN
1520-510X
Svazek periodika
60
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
7617-7621
Kód UT WoS článku
000661306200005
EID výsledku v databázi Scopus
2-s2.0-85107902910