Fibrillation of Pristine 2D Materials by 2D-Confined Electrolytes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F24%3A00584850" target="_blank" >RIV/61388980:_____/24:00584850 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0354846" target="_blank" >https://hdl.handle.net/11104/0354846</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202315038" target="_blank" >10.1002/adfm.202315038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fibrillation of Pristine 2D Materials by 2D-Confined Electrolytes
Popis výsledku v původním jazyce
2D materials are solid microscopic flakes with a-few-Angstrom thickness possessing some of the largest surface-to-volume ratios known. Altering their conformation state from a flat flake to a scroll or fiber offers a synergistic association of properties arising from 2D and 1D nanomaterials. However, a combination of the long-range electrostatic and short-range solvation forces produces an interlayer repulsion that has to be overcome, making scrolling 2D materials without disrupting the pristine structure a challenging task. Herein, a facile method is presented to alter the 2D materials' inter-layer interactions by confining organic salts onto their basal area, forming 2D-confined electrolytes. The confined electrolytes produce local charge inhomogeneities, which can conjugate across the interlayer gap, binding the two surfaces. This allows the 2D-confined electrolytes to behave as polyelectrolytes within a higher dimensional order (2D> 1D) and form robust nanofibers with distinct electronic properties. The method is not material-specific and the resulting fibers are tightly bound even though the crystal structure of the basal plane remains unaltered.
Název v anglickém jazyce
Fibrillation of Pristine 2D Materials by 2D-Confined Electrolytes
Popis výsledku anglicky
2D materials are solid microscopic flakes with a-few-Angstrom thickness possessing some of the largest surface-to-volume ratios known. Altering their conformation state from a flat flake to a scroll or fiber offers a synergistic association of properties arising from 2D and 1D nanomaterials. However, a combination of the long-range electrostatic and short-range solvation forces produces an interlayer repulsion that has to be overcome, making scrolling 2D materials without disrupting the pristine structure a challenging task. Herein, a facile method is presented to alter the 2D materials' inter-layer interactions by confining organic salts onto their basal area, forming 2D-confined electrolytes. The confined electrolytes produce local charge inhomogeneities, which can conjugate across the interlayer gap, binding the two surfaces. This allows the 2D-confined electrolytes to behave as polyelectrolytes within a higher dimensional order (2D> 1D) and form robust nanofibers with distinct electronic properties. The method is not material-specific and the resulting fibers are tightly bound even though the crystal structure of the basal plane remains unaltered.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
34
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
2315038
Kód UT WoS článku
001186210500001
EID výsledku v databázi Scopus
2-s2.0-85187932825