Evolution of phase composition of cordierite-sapphirine ceramics in terms of the temperature dependence of Young's modulus and damping determined via the impulse excitation technique (IET)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F24%3A00585866" target="_blank" >RIV/61388980:_____/24:00585866 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/24:43929040
Výsledek na webu
<a href="https://doi.org/10.1016/j.jeurceramsoc.2024.04.048" target="_blank" >https://doi.org/10.1016/j.jeurceramsoc.2024.04.048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jeurceramsoc.2024.04.048" target="_blank" >10.1016/j.jeurceramsoc.2024.04.048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolution of phase composition of cordierite-sapphirine ceramics in terms of the temperature dependence of Young's modulus and damping determined via the impulse excitation technique (IET)
Popis výsledku v původním jazyce
Ceramics from the magnesia-alumina-silica (MAS) system are common products of the ceramic industry. The phase composition of these systems can be rather complex, especially when feldspar is added as a flux, and thus attempts to correlate the composition and structure of these ceramics to their properties are quite rare, especially when considerable amounts of glass phase and sapphirine appear after firing. In this paper an attempt is made to correlate, for a talc-kaolin-alumina-feldspar mixture resulting in cordierite-sapphirine ceramics after firing to 1250 °C, the resulting elastic properties (Young's modulus), as determined via the impulse excitation technique (IET), with the phase composition, determined via X-ray diffraction (XRD). Moreover, it is shown how the evolution of the phase composition and microstructure is reflected in the temperature dependence of Young's modulus and damping during heating-cooling cycles with maximum temperatures ranging from 1000 to 1250 °C.
Název v anglickém jazyce
Evolution of phase composition of cordierite-sapphirine ceramics in terms of the temperature dependence of Young's modulus and damping determined via the impulse excitation technique (IET)
Popis výsledku anglicky
Ceramics from the magnesia-alumina-silica (MAS) system are common products of the ceramic industry. The phase composition of these systems can be rather complex, especially when feldspar is added as a flux, and thus attempts to correlate the composition and structure of these ceramics to their properties are quite rare, especially when considerable amounts of glass phase and sapphirine appear after firing. In this paper an attempt is made to correlate, for a talc-kaolin-alumina-feldspar mixture resulting in cordierite-sapphirine ceramics after firing to 1250 °C, the resulting elastic properties (Young's modulus), as determined via the impulse excitation technique (IET), with the phase composition, determined via X-ray diffraction (XRD). Moreover, it is shown how the evolution of the phase composition and microstructure is reflected in the temperature dependence of Young's modulus and damping during heating-cooling cycles with maximum temperatures ranging from 1000 to 1250 °C.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the European Ceramic Society
ISSN
0955-2219
e-ISSN
1873-619X
Svazek periodika
44
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
7120-7138
Kód UT WoS článku
001248416800001
EID výsledku v databázi Scopus
2-s2.0-85191530073