Accuracy of Finite Quadratic Serendipity Elements in Implicit Dynamic Wave Propagation Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F10%3A00345669" target="_blank" >RIV/61388998:_____/10:00345669 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accuracy of Finite Quadratic Serendipity Elements in Implicit Dynamic Wave Propagation Problems
Popis výsledku v původním jazyce
The numerical solution of the fast transient elastodynamics problem by the finite element method is influenced by the dispersion errors caused by both spatial and time discretizations. The errors of the phase and group velocities, the diversion of the wave propagation and cut-off frekvency of the FE mesh can be mentioned. In general, dispersion errors can be controlled by a choice of the finite element type, a type of the mass matrix (consistent or lumped) and time integration method.The results of thetime-spatial dispersion analysis of the plane square 8-node serendipity finite element for the Newmark method are presented. Based on the dispersion error analysis, the most accurate and effective solution of the elastic wave propagation is obtained forthe Courant number Co = 0.25 and the element size given by H = 1/3 of wavelength corresponding to 2% dispersion error in the arbitrary direction of wave propagation.
Název v anglickém jazyce
Accuracy of Finite Quadratic Serendipity Elements in Implicit Dynamic Wave Propagation Problems
Popis výsledku anglicky
The numerical solution of the fast transient elastodynamics problem by the finite element method is influenced by the dispersion errors caused by both spatial and time discretizations. The errors of the phase and group velocities, the diversion of the wave propagation and cut-off frekvency of the FE mesh can be mentioned. In general, dispersion errors can be controlled by a choice of the finite element type, a type of the mass matrix (consistent or lumped) and time integration method.The results of thetime-spatial dispersion analysis of the plane square 8-node serendipity finite element for the Newmark method are presented. Based on the dispersion error analysis, the most accurate and effective solution of the elastic wave propagation is obtained forthe Courant number Co = 0.25 and the element size given by H = 1/3 of wavelength corresponding to 2% dispersion error in the arbitrary direction of wave propagation.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BI - Akustika a kmity
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů