Nested BDDC for a saddle-point problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F13%3A00438700" target="_blank" >RIV/61388998:_____/13:00438700 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00211-013-0548-2" target="_blank" >http://dx.doi.org/10.1007/s00211-013-0548-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-013-0548-2" target="_blank" >10.1007/s00211-013-0548-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nested BDDC for a saddle-point problem
Popis výsledku v původním jazyce
We propose a Nested BDDC for a class of saddle-point problems. The method solves for both flux and pressure variables. The fluxes are resolved in three-steps: the coarse solve is followed by subdomain solves, and last we look for a divergence-free flux correction and pressure variables using conjugate gradients with a Multilevel BDDC preconditioner. Because the coarse solve in the first step has the same structure as the original problem, we can use this procedure recursively and solve (a hierarchy of)coarse problems only approximately, utilizing the coarse problems known from the BDDC. The resulting algorithm thus first performs several upscaling steps, and then solves a hierarchy of problems that have the same structure but increase in size while sweeping down the levels, using the same components in the first and in the third step on each level, and also reusing the components from the higher levels. Because the coarsening can be quite aggressive, the number of levels can be kept s
Název v anglickém jazyce
Nested BDDC for a saddle-point problem
Popis výsledku anglicky
We propose a Nested BDDC for a class of saddle-point problems. The method solves for both flux and pressure variables. The fluxes are resolved in three-steps: the coarse solve is followed by subdomain solves, and last we look for a divergence-free flux correction and pressure variables using conjugate gradients with a Multilevel BDDC preconditioner. Because the coarse solve in the first step has the same structure as the original problem, we can use this procedure recursively and solve (a hierarchy of)coarse problems only approximately, utilizing the coarse problems known from the BDDC. The resulting algorithm thus first performs several upscaling steps, and then solves a hierarchy of problems that have the same structure but increase in size while sweeping down the levels, using the same components in the first and in the third step on each level, and also reusing the components from the higher levels. Because the coarsening can be quite aggressive, the number of levels can be kept s
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Svazek periodika
125
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
761-783
Kód UT WoS článku
000327080900006
EID výsledku v databázi Scopus
—