The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F17%3A00476157" target="_blank" >RIV/61388998:_____/17:00476157 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00419-016-1220-y" target="_blank" >https://link.springer.com/article/10.1007/s00419-016-1220-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00419-016-1220-y" target="_blank" >10.1007/s00419-016-1220-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer
Popis výsledku v původním jazyce
The boundary integral equations are derived in the framework of the analytical five-mode models for propagation of symmetric and skew-symmetric waves in a straight elastic layer of the constant thickness. The forcing problems for fundamental loading cases are solved with the bi-orthogonality conditions employed. By these means, the Green’s matrices are constructed. The derivation of the Somigliana’s identities for the five-mode models is presented. To exemplify application of the method of boundary integral equations, eigenfrequencies of a layer of the finite length are found for two sets of boundary conditions. In the course of analysis, the essential features and advantages of the method are highlighted. The isogeometric analysis at several approximation levels and the standard finite element software are also used to calculate the eigenfrequencies. The results obtained by alternative methods are shown to be in an excellent agreement with eachnother.
Název v anglickém jazyce
The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer
Popis výsledku anglicky
The boundary integral equations are derived in the framework of the analytical five-mode models for propagation of symmetric and skew-symmetric waves in a straight elastic layer of the constant thickness. The forcing problems for fundamental loading cases are solved with the bi-orthogonality conditions employed. By these means, the Green’s matrices are constructed. The derivation of the Somigliana’s identities for the five-mode models is presented. To exemplify application of the method of boundary integral equations, eigenfrequencies of a layer of the finite length are found for two sets of boundary conditions. In the course of analysis, the essential features and advantages of the method are highlighted. The isogeometric analysis at several approximation levels and the standard finite element software are also used to calculate the eigenfrequencies. The results obtained by alternative methods are shown to be in an excellent agreement with eachnother.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archive of Applied Mechanics
ISSN
0939-1533
e-ISSN
—
Svazek periodika
87
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
737-750
Kód UT WoS článku
000399231900010
EID výsledku v databázi Scopus
2-s2.0-85006952496