Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F17%3A00482044" target="_blank" >RIV/61388998:_____/17:00482044 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/17:10367815
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2016.10.010" target="_blank" >http://dx.doi.org/10.1016/j.cam.2016.10.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2016.10.010" target="_blank" >10.1016/j.cam.2016.10.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM
Popis výsledku v původním jazyce
The quasistatic normal-compliance contact problem of isotropic homogeneous linear visco-elastic bodies with Coulomb friction at small strains in Kelvin-Voigt rheology is considered. The discretization is made by a semi-implicit formula in time and the Symmetric Galerkin Boundary Element Method (SGBEM) in space, assuming that the ratio of the viscosity and elasticity moduli is a given relaxation-time coefficient. The obtained recursive minimization problem, formulated only on the contact boundary, has a nonsmooth cost function. If the normal compliance responds linearly and the 2D problems are considered, then the cost function is piecewise-quadratic, which after a certain transformation gets the quadratic programming (QP) structure. However, it would lead to second-order cone programming in 3D problems. Finally, several computational tests are presented and analysed, with an additional discussion on numerical stability and convergence of the involved approximated Poincare-Steklov operators.
Název v anglickém jazyce
Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM
Popis výsledku anglicky
The quasistatic normal-compliance contact problem of isotropic homogeneous linear visco-elastic bodies with Coulomb friction at small strains in Kelvin-Voigt rheology is considered. The discretization is made by a semi-implicit formula in time and the Symmetric Galerkin Boundary Element Method (SGBEM) in space, assuming that the ratio of the viscosity and elasticity moduli is a given relaxation-time coefficient. The obtained recursive minimization problem, formulated only on the contact boundary, has a nonsmooth cost function. If the normal compliance responds linearly and the 2D problems are considered, then the cost function is piecewise-quadratic, which after a certain transformation gets the quadratic programming (QP) structure. However, it would lead to second-order cone programming in 3D problems. Finally, several computational tests are presented and analysed, with an additional discussion on numerical stability and convergence of the involved approximated Poincare-Steklov operators.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
315
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
249-272
Kód UT WoS článku
000392039300019
EID výsledku v databázi Scopus
2-s2.0-85002271158