Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F17%3A00484161" target="_blank" >RIV/61388998:_____/17:00484161 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27230/17:10237770 RIV/61989100:27740/17:10237770
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijmecsci.2016.11.009" target="_blank" >http://dx.doi.org/10.1016/j.ijmecsci.2016.11.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijmecsci.2016.11.009" target="_blank" >10.1016/j.ijmecsci.2016.11.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors
Popis výsledku v původním jazyce
The magnetorheological squeeze film damping devices for vibration suppression of rigid rotors are studied in this article. The development of their mathematical model is based on assumptions of the classical theory of lubrication with the exception of lubricant. Because the magnetorheological fluids affected by a magnetic field belong to the class of liquids with a yielding shear stress, the lubricant is represented by bilinear theoretical material. The pressure distribution in the full oil film is then described by a modified Reynolds equation. In addition, the influence of cavitation and of the magnetic forces, by which the damping device acts on the rotor journal, were taken into account. The advantage of the developed mathematical model is that, unlike the Bingham or Herschel-Bulkley materials, the flow curve of the bilinear liquid is continuous. It reduces the nonlinear character of the damping forces and thus raises the numerical stability of the computational procedures. The solution convergence is reached also in cases when the procedures based on modelling the magnetorheological fluid by Bingham or Herschel-Bulkley materials fail. Application of bilinear material provides a better description of physical behavior of magnetorheological oils affected by a magnetic field during the damping process. The simulations show that changing magnetic induction in the lubricating film makes it possible to achieve optimum performance of the damping device in a wide range of the rotor operating speeds and confirms increased numerical stability of the computational procedures.
Název v anglickém jazyce
Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors
Popis výsledku anglicky
The magnetorheological squeeze film damping devices for vibration suppression of rigid rotors are studied in this article. The development of their mathematical model is based on assumptions of the classical theory of lubrication with the exception of lubricant. Because the magnetorheological fluids affected by a magnetic field belong to the class of liquids with a yielding shear stress, the lubricant is represented by bilinear theoretical material. The pressure distribution in the full oil film is then described by a modified Reynolds equation. In addition, the influence of cavitation and of the magnetic forces, by which the damping device acts on the rotor journal, were taken into account. The advantage of the developed mathematical model is that, unlike the Bingham or Herschel-Bulkley materials, the flow curve of the bilinear liquid is continuous. It reduces the nonlinear character of the damping forces and thus raises the numerical stability of the computational procedures. The solution convergence is reached also in cases when the procedures based on modelling the magnetorheological fluid by Bingham or Herschel-Bulkley materials fail. Application of bilinear material provides a better description of physical behavior of magnetorheological oils affected by a magnetic field during the damping process. The simulations show that changing magnetic induction in the lubricating film makes it possible to achieve optimum performance of the damping device in a wide range of the rotor operating speeds and confirms increased numerical stability of the computational procedures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Mechanical Sciences
ISSN
0020-7403
e-ISSN
—
Svazek periodika
127
Číslo periodika v rámci svazku
Jul SI
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
191-197
Kód UT WoS článku
000404504800017
EID výsledku v databázi Scopus
2-s2.0-85007360787