Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F17%3A00484176" target="_blank" >RIV/61388998:_____/17:00484176 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2017.07.032" target="_blank" >http://dx.doi.org/10.1016/j.ijsolstr.2017.07.032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2017.07.032" target="_blank" >10.1016/j.ijsolstr.2017.07.032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening
Popis výsledku v původním jazyce
In this work, we investigate the numerical convergence of a set of plasticity models with different kine- matic and directional distortional hardening rules under cyclic plastic loading. In particular, we revisit the results presented in Feigenbaum et al. (2012) in order to more robustly check for convergence during the numerical integration procedure, and show that the results presented in the previous work do not con- verge. We investigate the role of the step-size and numerical scheme on the convergence of these models when predicting ratcheting. By reducing step-sizes and using a forward Euler scheme during numerical integration, converged solutions are obtained. The new converged results lead to new conclusions. Re- sults still suggest that directional distortional hardening can improve ratcheting predictions, however the addition of directional distortional hardening yields less improvements compared to kinematic hardening alone than previously thought. This new conclusion, strongly suggests the need for additional modeling developments in order accurately predict ratcheting strains under a wide variety of cyclic plastic loadings.
Název v anglickém jazyce
Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening
Popis výsledku anglicky
In this work, we investigate the numerical convergence of a set of plasticity models with different kine- matic and directional distortional hardening rules under cyclic plastic loading. In particular, we revisit the results presented in Feigenbaum et al. (2012) in order to more robustly check for convergence during the numerical integration procedure, and show that the results presented in the previous work do not con- verge. We investigate the role of the step-size and numerical scheme on the convergence of these models when predicting ratcheting. By reducing step-sizes and using a forward Euler scheme during numerical integration, converged solutions are obtained. The new converged results lead to new conclusions. Re- sults still suggest that directional distortional hardening can improve ratcheting predictions, however the addition of directional distortional hardening yields less improvements compared to kinematic hardening alone than previously thought. This new conclusion, strongly suggests the need for additional modeling developments in order accurately predict ratcheting strains under a wide variety of cyclic plastic loadings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Solids and Structures
ISSN
0020-7683
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
105-121
Kód UT WoS článku
000412964800008
EID výsledku v databázi Scopus
2-s2.0-85028335022